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Abstract. This paper explores the use of fuzzy difference methods in order to understand the differences be-
tween forest classes. The context for this work is provided by REDD+, which seeks to reduce the net emissions
of greenhouse gases by rewarding the conservation of forests in developing countries. REDD+ requires that
local inventories of forest are undertaken and payments are made on the basis of the amount of forest (and asso-
ciated carbon storage). At the most basic level this involves classifying land into forest and non-forest. However,
the critical issues affecting the uptake, buy-in and ultimately the success of REDD+ are the lack of universally
agreed definition of forest to support REDD+ mapping activities, and where such a definition is imposed, the
marginalization of local community voices and local landscape conceptualizations. This tension is at the heart
of REDD+. This paper addresses these issues by linking methods to quantify changes in fuzzy land cover to the
concept of data primitives, which have been previously proposed as a suitable approach to move between land
cover classes with different semantics. These are applied to case study that quantifies the difference in areas for
two definitions of forest derived from the GLC and FAO definitions of forest. The results show how data primi-
tives allow divergent concepts of forest to be represented and mapped from the same data and how the fuzzy sets
approach can be used to quantify the differences and non-intersections of different concepts of forest. Together
these methods provide for transparent translations between alternative conceptualizations of forest, allowing for
plural notions of forest to be mapped and quantified. In particular, they allow for moving from an object-based
notion of forest (and land cover in general) to a field-based one, entirely avoiding the need for forest boundaries.

1 Introduction

This paper suggests and applies an alternative approach for
classifying and mapping land cover, using the example of for-
est in the context of Reducing Emissions from Deforestation
and Forest Degradation (REDD and REDD+). REDD+ Ini-
tiatives seek to reduce the net emissions of greenhouse gases
by rewarding the conservation of forests in developing coun-
tries (Angelsen, 2009). REDD+ requires that local invento-
ries of forest are undertaken and payments are made on the
basis of the amount of forest (and associated carbon) that are
mapped. At the most basic level this involves classifying land
into forest and non-forest.

The problem encountered by many forest monitoring
strategies under REDD+ is how to accommodate divergent
conceptualizations of “forest” such that local interpretations
are reflected in forest mapping while providing a transpar-
ent tool for carbon accounting. The International Panel on
Climate Change (IPCC) recommends the use of an interna-
tionally recognized forest definition (e.g. that of the Food and
Agricultural Organisation, FAO) but even within the United
Nations Framework Convention on Climate Change (UN-
FCCC) there are no agreed definitions (Romijn et al., 2013).
The flexibility of REDD+- allows forest to be defined locally,
but ultimately requires mappings to be transparent (Gupta et
al., 2014; Ryan et al., 2014), in order for forest estimates
to be accurate and payments to be justified. There are well
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established reasons for not having a standard definition of
forest (see Comber et al., 2007, for an extensive discussion
on the problems caused by the imposition of standards in
land cover mapping). Not least among these is that local
considerations and landscape conceptualizations are ignored
(Hoeschele, 2000; Robbins, 2001) to the detriment of local
stakeholders. However, there can be considerable disagree-
ment over the amount of forest, when mapped under different
classifications. For example, Romijn et al. (2013) compared
the forest stock levels in Indonesia when mapped using lo-
cal forest definitions and using FAO definitions and found
the extent of forest to be 27 % higher when using the local
definition.

The critical issues addressed by this paper are how to al-
low for these divergent landscape conceptualizations within
mapping and how to avoid possibly inaccurate estimates of
forest extent. The analysis applies a methodology that links
data primitives (Comber, 2008; Wadsworth et al., 2008) and
soft classifications. It applies these to classifications of forest
from the Global Land Cover (GLC) project as described in
Bartholome and Belward (2005) and from the FAO (Di Gre-
gorio and Jansen, 1998). It shows how these can be re-
interpreted using soft classifications to explore the overlaps
and boundaries between different versions of forest. The data
primitive approach allows the critical dimensions associated
with land cover and land use to be captured as well as the
inherent relative uncertainty in class definitions. It provides
a shared, transparent, robust and well understood method
for mapping and reporting forested areas and for supporting
global policy initiatives such as REDD+, whilst at the same
time accommodating local divergence in forest semantics —
and the way that “forest” (and therefore the boundary with
non-forest) is conceptualized spatially.

To situate our approach, we first provide the necessary
background on land cover classification, the problems with
REDD+ in relation to crisp definitions of forest and the
uncertainty in forest definitions, and the concepts of fuzzy
boundaries and fuzzy differences.

Classification, the process of sorting real world phenomena
into categories or classes, is a core activity within geogra-
phy and many other disciplines. Classes describe groups of
social and environmental phenomena with broadly similar
characteristics. Land cover classes are used to describe the
physical characteristics of the earth’s surface and land use
classes describe the socio-economic activities thereon. Typ-
ical land cover classes include water, grass and forest; typi-
cal land use classes include agriculture, forestry and urban.
There is an extensive literature on the different philosophi-
cal underpinnings of the way that land cover and land use

classes are conceptualized (e.g. Comber et al., 2005; Fisher et
al., 2005), including for specific classes such as forest (Ben-
net, 2001; Comber, 2008). This application based literature
is complemented by more general considerations of the na-
ture of classification (e.g. Lakoff, 1987) and by more for-
mal research considering the nature of how to represent ob-
jects, processes and relationships of geographic phenomena
in computer models and analyses (e.g. Kuhn, 2005, 2012).

Classification typically allocates each item uniquely to one
class and this is true for land cover and land use, although
much theoretical work exists suggesting alternative, soft clas-
sifications such as those supported by fuzzy sets (e.g. Fisher,
2010). All global land cover data produced for monitoring
purposes and used as inputs to global climate change mod-
els adopt a crisp classification with hard boundaries between
the resulting land cover objects of different classes. Thus,
land cover classification is a process of homogenization that
ignores any within class variation and, more critically, ex-
cludes any consideration of the potential for uncertainty in
boundaries between classes. This contrasts with a well de-
veloped literature on boundary uncertainty within geography
(Smith, 1995; Burrough and Frank, 1996), reflecting a ver-
nacular definition of geography as “the art of drawing lines
on a map that do not exist in reality”.

Classifications with crisp boundaries provide a convenient
and familiar framework for representing environmental and
social processes that are readily understood by policy mak-
ers. For example, in the sphere of climate change, REDD+
and climate models seek to standardize or “harmonize” def-
initions of forest and use crisp mappings of forested areas
that may not exhibit crisp edges in reality and whose classifi-
cation may be deeply contested. This culture of class defini-
tion standardization creates baseline inventories that ignore
uncertainties and local variations in how land cover classes
such as forest are conceptualized (semantics) and the func-
tions associated with them. This can have serious political
implications for the way that land is managed locally and
for local discourses around land. This has become evident
with the roll out of REDD+ in many developing countries,
where fixed [PCC/UN definitions of “forest”, for the purpose
of carbon accounting, are being used to drive land reform
and privatization agendas. Local land cover interpretations
are excluded from local and global decision making.

The REDD and REDD+ initiatives aim at mitigating cli-
mate change by reducing net emissions of greenhouse gases
and financially rewarding enhanced forest management in
developing countries. In simple terms, poor countries with
forests are to be paid to not cut down their trees, with pay-
ments based on the amount of trees and carbon storage ca-
pacity they have. In order to support payments, the UN have
suggested that countries should develop robust and trans-
parent forest monitoring systems to record forest and car-



bon stocks and changes using a combination of remote sens-
ing and field surveys (UNFCCC COP15, 2009), with each
country defining what constitutes “forest”. This was to over-
come the deeply contested nature of what a “forest” is (and
land cover and land use classification in general), which is
well established in the literature (see for example Hoeschele,
2000; Bennet, 2001; Robbins, 2001; Smith and Mark, 2001;
Comber et al., 2005) and reflects commendable courage by
the remote sensing community that is driving the REDD+
initiative. However, REDD+ activities require forest to be
demarked, presenting a number of challenges, two of them
being of critical importance.

First, any particular definition of forest and the associated
mapping will determine the reported amount of forest, which
will in turn affect the estimates of carbon storage (Mag-
don and Kleinn, 2012; Romijn et al., 2013). There are hun-
dreds of forest definitions as documented by Lund (2016)
and explored conceptually by Bennett (2001) and Comber
et al. (2005) with profoundly different threshold parameters
for height, stripwidth, minimum area, species (some include
grasses such as bamboo), canopy, management and plan-
tation cover etc. These are international, national and sub-
national in scope and reflect locally important variations in
the concept of “forest” and its semantics — what the concept
is in the local context (not just the REDD+ context). Re-
garding REDD+, Morales-Barquero et al. (2014) highlight
the difficulties in operationalizing local and national level
REDD+- projects and programmes in Mexico. They present a
framework that includes local definitions and measurements
of forest degradation that support both local and national
objectives and suggest the use of comparative biophysical
benchmarks for assessing degradation. More recently, Chaz-
don et al. (2016) examined historical forest concepts and def-
initions and documented how these relate to variations in
socio-economic activity. They note a number of problems
with top-down forest definitions for assessing global changes
in forest stocks: their failure to distinguish between natural
and plantation forests and the lack of consideration of the
qualities and trajectories of forested areas in standard ap-
proaches. In order to try to accommodate the divergence in
the concept of forest, and to support consistency in carbon ac-
counting, the UN requires robust and transparent national re-
porting of measurement systems, remote sensing and ground
based forest carbon inventory data, the methods and the for-
est definitions used in national measurements (Herold et al.,
2012a, b).

Second, national definitions and associated mappings are
deeply political exercises that are frequently used to drive
secondary local political agendas that exclude and are in
conflict with local communities. Mapped forests, however
they are defined, are presented locally as “facts”, which are
then manipulated towards the interests of the state, exclud-
ing community views, perceptions and opinions from the
classification and measurement activity. For example, there
are cases of REDD+- projects being used locally to support

the violent eviction of people from the land in many coun-
tries (Himmelfarb, 2012; Cavanagh and Benjaminsen, 2014;
Grainger and Geary, 2011; Nel and Hill, 2013; Lyons and
Westoby, 2014; Forest Peoples Programme, 2014; Beymer-
Farris and Bassett, 2012). In other cases, national definitions
are imposed and the subsequent mappings are used to sup-
port land privatization agendas and forest commodification
with the objective of removing commonly held land from
collective ownership (Ece, 2015). Critical to the success of
REDD+, there are also problems in identifying the finan-
cial beneficiaries of carbon payments because the forested
land lacks natural ownership divisions. A further negative
dimension of REDD+ is that it often is used by local pol-
icy makers as an excuse to ignore and overlook the opin-
ions and views of forest-dependent communities and indige-
nous forest-dwelling populations. Local understanding and
knowledge are important for the forest conservation objec-
tives of REDD+-. For example, Bong et al. (2016) com-
pared community knowledge of deforestation and degrada-
tion drivers amongst different Indonesian villages and found
local knowledge to be key to understanding the local im-
pacts of deforestation drivers. They highlighted the impor-
tance of incorporating local knowledge and conceptualiza-
tions within definitions of forest to develop more locally ap-
propriate REDD+ monitoring systems. However, some com-
munities in likely REDD+ countries do not hold a concept
of forest at all (Niclas Burenhult, personal communication,
2016) and where they do this has a nuanced and spiritual
meaning. Specifically, although the people of Jahai in the
in the Malay Peninsula live in forests, they have no concept
of forest (Burenhult, 2009). Instead it is their home and the
nearest terms they have for forest-like things describe leaves
and trees as well as canopy floor, covered area and exposed
area.

The conclusion is that the requirement of REDD+- to de-
marcate forest is problematic in many places. Crisp map-
pings of forest do not reflect the many cultural, linguistic
and ownership aspects of forest, whichever way the category
is defined. Initiatives like REDD+-, regardless of how well
meaning they are, result in a clash of categories with the con-
sequence that important forest related parameters are over-
looked. These wide ranging negative implications for forest-
dependent communities and indigenous forest-dwelling pop-
ulations threaten forest conservation in developing countries
and as a consequence have been referred to as the dark side
of REDD+ (Cavanagh et al., 2015).

The core issue that REDD+ mappings exemplify is the
inherent uncertainty associated with the concept like “for-
est”. It is both a vague and ambiguous concept (Fisher et al.,
2006b, c; Comber et al., 2006). Fisher et al. (2006a) describe
a taxonomy of uncertainty for geographic objects, with a par-
ticular focus on land cover. This describes different types of
uncertainty as being related to how well the geographic ob-
jects and classes of object are defined. They describe well de-
fined object classes that are easily, and uncontestedly, sepa-



rable from other object classes. In such cases any uncertainty
is related measurement error which can be analysed using
probabilities. However, for objects whose definitions are less
well defined (poorly defined object classes), and that are con-
tested such as forest, the uncertainties relate to vagueness or
ambiguity. Vagueness occurs when it is difficult to unequiv-
ocally allocate an individual object to a class, for example
because of disagreement about its components or its extent.
Ambiguity occurs when an object can be placed into more
than one class under different schemes or interpretation of
the evidence, or when the assignment of an object to a class
is open to interpretation. The concept of “forest” in the con-
text of REDD+ is both vague and ambiguous, depending on
which side of the (mapping) fence you are on.

In fuzzy land classifications, each piece of land or object
(for example, the piece corresponding to a pixel in a satel-
lite image) is allocated a degree of membership to each class
in the range [0, 1] (Fisher and Pathirana, 1990). This al-
lows each object to have partial membership to more than
one land cover class. For these reasons fuzzy approaches are
frequently referred to as “soft” classifications as the fuzzy
outputs include and represent some of the inherent uncer-
tainty associated with allocating objects to classes (Fisher,
1997). This is in contrast to “hard” or Boolean approaches,
which do not accommodate any uncertainty. For these rea-
sons fuzzy sets and fuzzy classification algorithms have been
suggested as appropriate approaches in remote sensing anal-
yses for representing land cover objects which may or may
not fit neatly into the classification scheme and/or the sam-
pling frame (pixel).

In a standard land cover classification, class summaries
or centres are created that describe the (proto-) typical class
properties usually in an n-dimensional feature space, for ex-
ample representing different remote sensing image bands,
or as in this case, data primitives as described below. In a
Boolean classification each piece of land is allocated to the
class to which it is nearest in the feature space. Different al-
gorithms create the class centres and measure distances in
n-dimensional space in different ways. The issue that fuzzy
classifications seek to address is that a piece of land may be
near to more than one class, suggesting that it contains some
of the properties of more than one classes, resulting in a de-
gree of ambiguity (Fisher et al., 2006a) in the allocation.

A second commonly arising problem that fuzzy classifi-
cations seek to address relates to the sampling frame. The
assumption in mapping land cover using remote sensing is
that the objects of interest on the ground are adequately de-
scribed and captured by the imagery. The inference is that
the spatial scale of the processes on the ground (such as land
cover) are larger than the pixel and that contiguous pixels
will describe the extent of these processes. In reality there
are many sub-pixel objects on the ground (Fisher, 1997) aris-

ing from a mismatch between the scale of observation and
the granularity of the processes being observed (Fisher et al.,
2007). Fuzzy sets seek to accommodate these problems re-
lated to the pixel in the mapping of sub-pixel objects (less
than the size of a pixel), trans-pixel objects (linear objects
crossing pixels), intergrades (where land cover types merge
into each other over space) and boundaries (where multiple
covers meet within one pixel).

Conceptually, fuzzy approaches have potential value to op-
erational land cover monitoring exercises such as REDD+
because they can explicitly accommodate the uncertainty in-
herent to classification. Here these the concepts of fuzzy min-
imum interval, fuzzy bounded difference and fuzzy loss and
gain are extended to examine the differences between two
fuzzy classifications as described in Sect. 3.

The typical land cover classification process described above
results in crisp and hard boundaries between classes in at-
tribute space as well as between the resulting regions on the
ground. It is therefore tempting to interpret these regions as
land cover objects with boundaries and identity. To quantify
a country’s amount of, for example, forest, one simply adds
the surface areas of all forest objects in that country at a given
time.

Yet, for the reasons stated in the previous subsection, such
an outcome of land cover classification is not satisfactory. In
particular, for the case of forests, it is unsuitable to deal with
partial deforestation and forest degradation. Forests do not
simply disappear from their boundaries inward by convert-
ing pieces of forests to non-forests. Rather, deforestation and
forest degradation proceed as gradual reductions of “forest-
ness” of pieces of land, as might occur, for example, through
a systematic thinning of tree density.

It turns out that fuzzy boundaries and differences, or rather
fuzzy membership values for pieces of land in a land use
category, provide exactly the mathematical model needed to
deal with such an idea of forestness. As the following analy-
sis section will show, they generate feature vectors for each
piece of land corresponding to, for example, a pixel. In Geo-
graphic Information Systems (GIS), such arrays of vectors of
observed values are known as vector fields. Thus, using the
classic dichotomy of fields vs. objects (Couclelis, 1992), we
conclude that forests are much more adequately conceptual-
ized as fields rather than as objects.

To illustrate the proposed method, this paper uses the case
study of translating land cover data describing forest in North
America to another classification. In this case we convert the
6 GLC forest classes to the FAO class of forest. The approach
is to characterize the classified data using data layers referred
to as data primitives (Comber et al., 2008; Wadsworth et al.,



2008), which enable each class to be described at the most
fundamental level. In the terminology of GIS field models,
data primitives are the dimensions of the forest field vector.

Defining land based objects not by their spectral properties
but by their fundamental functional and biophysical charac-
teristics has been suggested by a number of authors. Such
data primitives characterize the building blocks of land cover
and land use. They are fundamental because they seek to
describe land cover and land use classes in dimensions that
encapsulate what such classes mean and represent. The ob-
jective in describing categories of things such as forest in
this way, referred to as “conceptual spaces”, “approximation
spaces” and “domains”, is to generate descriptions of data
features to allow the amount of overlap between them to be
quantified. The approach is grounded in the work of Gar-
denfors (2000) and Ahlqvist (2004). Indeed, the FAO Land
Cover Classification System (LCCS) developed by Di Gre-
gorio and Jansen (1998) adopts a modified or constrained
data primitives approach.

Here we use data describing vegetation height, biomass
as a proxy for photo-synthetic activity, soil wetness, human
disturbance and seasonality for the data primitives. The po-
sitions of each class in these dimensions are extracted. Then
a new class of forest is defined using the same data primi-
tives and subsequently mapped. The differences between the
two soft, fuzzy mappings of forest within the primitives are
explored and quantified and shown to provide a transparent
and translatable comparison of different definitions and map-
pings of forest.

The GLC data were downloaded and extracted for the USA.
Five datasets were assembled to provide measures that ap-
proximated to the dimensions of vegetation height, biomass,
soil wetness, human disturbance and seasonality; these were
obtained from the following open data portals:

— vegetation height: from Existing Vegetation Height
data from http://www.landfire.gov/version_comparison.
php?mosaic=Y;

— biomass: from http://landcarbon.org/categories/
biomass-c/download/ (gC m~2);

— soil wetness and soil moisture: from http://giovanni.
gsfc.nasa.gov/giovanni for the month of June for O—
100 cm depth;

— human disturbance: proximity to mapped Urban and
Managed land from GLC (classes 16, 17, 18, 22);

— seasonality: phenology growing season data from the
MODIS archive: Duration DUR Length of photosyn-
thetic activity (number of days): https://Ita.cr.usgs.gov/
emodis_phen.

The sample number and total distribution of the GLC

classes.

Sample  Total no.
Tree cover, broadleaved, deciduous, closed 24219 104 142
Tree cover, needle-leaved, evergreen 32841 141220
Tree cover, mixed leaf type 13407 57652
Herbaceous cover, closed—open 3592 15449
Sparse herbaceous or sparse shrub cover 149 641
Cultivated and managed areas 23030 99030
Water bodies 1190 5118
Artificial surfaces and associated areas 1569 6748

These were all resampled to 0.0217 of a degree, with the
mean value used to aggregate the data, and clipped to a
smaller case study area. The spatial distributions of these
variables and the GLC data are shown in Figs. 1 and 2.

The typical characteristics of each of the GLC classes in each
of the five dimensions were extracted by selecting a sample
of GLC pixels from each class (Table 1), with the sample
number weighted by the distribution of the class in the study
area. The class centres are shown in Table 2.

A fuzzy c-means classifier was used to generate soft clas-
sifications for each pixel in the study area. This algorithm
used was the implementation of the fuzzy clustering method
(e.g. Bezdek, 1981) in the e1071 R package (Meyer et al.,
2012). The classifier generates fuzzy memberships in the
range of [0, 1] to each class for each pixel. In this case the
class centres were those in Table 2 and the classifier gener-
ated fuzzy memberships to the set of each class in the five
primitive dimensions.

The fuzzy c-means algorithm seeks to minimise the objec-
tive function:

ZZwiu?]’-dlj, (1)
ij

where w; is the weight of observation (pixel) 7, u;; is the
membership of observation i in cluster (class) j, and d;; is
the Euclidean distance (dissimilarity) between observation i
and centre j. The fuzzy c-means algorithm generates a mem-
bership to each class for each pixel, based on their closeness
to the class centres in Table 2. (Note that fuzzy memberships
can be used to extract crisp values of the amount of forest and
non-forest, depending on the classes of forest that are pre-
ferred, through the application of different alpha cuts.) Then,
by combining all of the memberships for the three GLC for-
est classes, a fuzzy class of forest from the GLC classes was
generated.
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Figure 1. The data primitives in the study area: Seasonality in photosynthetic activity (days), Lack of human disturbance (proximity Urban
and Managed land) in km, Soil moisture (water) in kg m~Z, Vegetation height in metres and Biomass in gC m~2.

Figure 2. GLC data: green and brown are forest classes, pink is
agriculture and red is urban.

Finally, a second forest class was introduced. This was
based on the FAO forest class definition (http://www.fao.org/
docrep/006/ad665e/ad665e06.htm) and included the follow-
ing key characteristics: tree crown cover, more than 10 %
canopy cover, minimum height of 5m although young and
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“temporarily unstocked” land can be included. By selecting
a sample of forest pixels with the characteristics of being
greater than 5 m and having greater than 10 % canopy cover,
a second set of class centres in the five primitives was gener-
ated. These are shown in Table 3. The second fuzzy classifi-
cation of forest was then generated using the c-means algo-
rithm above, from the class centres.

3.4 Fuzzy boundaries and difference

The method for quantifying fuzzy differences between two
classifications is based on that suggested by Fisher et
al. (2006b). In this approach, the land cover at any location
is considered to have potential memberships to each of the
different classes being considered. That is, class membership
is considered as a fuzzy set. Fuzzy intersections and non-
intersections (parallel to fuzzy change) are determined using
the fuzzy confusion (correspondence) matrix. In a change
analysis this supports the calculation of fuzzy losses. Here,
we are interested in the degree to which different concepts
of forest overlap. The concepts of fuzzy loss and gain can
be used to determine the areas of difference between the two

www.geogr-helv.net/73/151/2018/
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The median values for each GLC in the 5 primitive dimensions: VH = Vegetation Height; BIO = Biomass; SW = Soil Wetness;

LHD = Lack of Human Disturbance; GS = Seasonality.

VH BIO SW LHD GS
Tree cover, broadleaved, deciduous, closed 24.6 8018.6 339.3 54 204.1
Tree cover, needle-leaved, evergreen 20.1 76734 281.2 5.8 2143
Tree cover, mixed leaf type 27,5 9701.6 3049 103 200.7
Herbaceous cover, closed—open 13.9 3415.1 2352 2.6 2052
Sparse herbaceous or sparse shrub cover 6.0 130.0 298.9 2.1 1927
Cultivated and managed areas 11.5 2407.0 337.1 0.0 2043
Water bodies 13.1  8160.3 303.7 1.8 2121
Artificial surfaces and associated areas 7.3 3673 2834 0.0 2145

classifications from the perspective of each concept of forest.
This process is exemplified in the sections below.

The fuzzy confusion (correspondence) matrix, describing
the intersection between the two fuzzy forest classes, can be
derived using the minimum interval or using the bounded dif-
ference of fuzzy loss and fuzzy gain. As Fisher et al. (2006b)
noted, the minimum interval is the standard approach in
fuzzy sets but is counter-intuitive when it is used to com-
pare different classes — it only makes sense in the context
of fuzzy land cover when comparing fuzzy sets of the same
class but captured at different times (i.e. the diagonal in a
change matrix). For these reasons a number of alternative
operators have been suggested (Klir and Yuan, 1995; Leung,
1988; Zadeh, 1965) and as Fisher et al. (2006b:166) note, “Of
these, the bounded difference between two fuzzy sets is the
simplest operator for which the results make the most sense”.

The notion of bounded difference underpins the fuzzy con-
fusion matrix as follows: the minimum interval is used to
calculate the fuzzy intersections between fuzzy sets of the
same class and the bounded difference is used to determine
all other fuzzy intersections (i.e. off-diagonals in the confu-
sion matrix). The concepts and measures of fuzzy loss and
gain, usually used in a time series analysis of change, can
here be used to determine the areas of difference between the
2 classifications containing the 2 concepts of forest. These
are derived from the marginal totals of a confusion matrix
and describe the overlaps (intersections) and non-overlaps
(non-intersections) between land cover classes defined in dif-
ferent ways. From these, estimates of the amount (area) of
fuzzy intersection between each class can be obtained as well
as the total amounts of non-intersection through fuzzy loss
and gain.

In a standard fuzzy sets approach, the minimum operator is
used to determine the intersection between two fuzzy classi-
fications, C and C; as follows:

n(Cz, C2) = min(u (C1, €2)). @)

In the analyses below, this is used to determine the diagonal
elements in the fuzzy correspondence matrices.

The bounded difference describes the fuzzy intersection of
2 land cover types. It provides a conservative estimate of in-
tersection and non-intersection because of its logic and math-
ematics: essentially if the sum of fuzzy memberships at any
location is less than one then the membership to the intersec-
tion, i.e. fuzzy change (non-intersection), will be zero. The
bounded difference between two fuzzy sets A and B is de-
fined as follows:

w(A N B) =max(0, u(A) + u(B) —1). 3)

In the methods suggested by Fisher et al. (2006b), the
bounded difference (Eq. 3) is used to quantify the off-
diagonal loss and gain at each location (pixel) from the
marginal totals of the fuzzy correspondence matrix.

Consider two fuzzy classifications (C; and Cj) of three
classes each (a, b and ¢) on a 4x4 pixel grid, as described in
Tables 4 and 5. Each cell contains the memberships to three
classes at each time interval.

The diagonals in the fuzzy correspondence matrix are pop-
ulated by the sum of the minimum intersections and the off
diagonals by the sums of the bounded difference. To illustrate
this, the table of minimum interval for class a in classes a;
and a is shown in Table 6, along with the bounded difference
between classes b1 and c;. The derived fuzzy correspondence
matrix is shown in Table 7.
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Table 3. The median values for each of the FAO Forest classes in the five primitive dimensions. The data primitives have the following
units: Seasonality photosynthetic activity (days), Lack of human disturbance (proximity Urban and Managed land) km, Soil moisture (wa-

ter) kg m~2, Vegetation height metres and Biomass gC m~2,

Vegetation  Biomass Soil Lack of Seasonality
height wetness human
disturbance
FAO forest 25 8665.5  309.2 7.3 205.7
FAO not-forest 1 130.0  348.6 0.0 206.3

Table 4. Example fuzzy memberships for a hypothetical classification over 4x4 pixel dataset with three classes (ay, b1 and cy).

aj by 1
05 050 043 0.33 0.33 033 0.14 0.17 0.17 0.17 043 05
05 038 029 033 033 025 029 0.17 0.17 038 043 0.5
02 020 040 040 0.60 0.60 020 0.20 020 020 040 04
0.2 0.17 040 0.40 0.60 0.50 020 0.20 020 033 040 04

Broadleaved, deciduous, closed Needle-leaved, evergreen
1 1
E E

Mixed leaf type Overall

1 1
E E

Figure 3. The fuzzy membership to the three GLC forest classes in study area and their combined fuzzy memberships to an overall forest

class.

4 Results

4.1 Fuzzy forest

The fuzzy memberships to the three GLC forest classes,
whose class centres are listed in Table 2 are shown in Fig. 3,
along with a combined overall membership for all GLC for-
est classes. The class centres for the forest class arising from
FAO class definition are shown in shown Table 3. The result
of the fuzzy c-means classification is shown in Fig. 4.

Geogr. Helv., 73, 151-163, 2018

4.2 Boundaries

Having generated the fuzzy classifications, the resulting
boundaries between the two forest classes (GLC2000 and
FAO) can now be compared. It is instructive to consider
a sub-region in greater detail, in this case an area to the
north and west of Atlanta, Georgia. Figure 5 shows the GLC-
derived and FAO-derived fuzzy forest distributions in greater
detail in Fig. 6. It is evident that the FAO membership val-
ues are greater in many places than the GLC memberships
and this is reflected in the summary statistics in Table 8. Fig-
ure 5 shows that, broadly, the presence of forest is indicated
in the same places (erroneously or not) by both definitions of
forest, with varying degrees of membership, suggesting dif-
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Table 5. Example fuzzy memberships for a second hypothetical classification, again with three classes (a1, b1 and cy).

aj by 1
033 033 050 05 033 033 050 0.5 0.17 0.17 025 025
025 025 050 05 025 025 050 05 038 038 025 025
043 043 020 02 043 043 020 02 043 043 040 040
043 043 038 02 043 043 038 02 043 043 0.38 040
FAO forest FAO not forest
1
E

Figure 4. The fuzzy membership to the FAO forest and not-forest classes in study area.

Table 6. The minimum interval for class a (that is aj—ap) and the
bounded difference between classes b1 and c;.

aj-ay bi—c
0.5 05 025 025 0 0O 0 O
0.38 038 025 0.25 0 0O 0 O
0.14 0.14 0.4 0.4 003 003 0 O
0.14 0.14 0.25 0.4 0.03 0O 0 O

ferent intensities of forest. The detail in Fig. 6 illustrates the
local variation in those membership intensities.

4.3 Fuzzy difference

The classic approach to examining the intersection between
two fuzzy sets is to use fuzzy bounded difference, with ex-
planatory fuzzy losses and gains (as in Table 7). The losses
and gains are evident in the off diagonals of the fuzzy
bounded difference correspondence matrix. The data for per
pixel fuzzy memberships for the FAO and GLC classifica-
tions of “forest” and “not-forest” were used as the inputs to
the fuzzy difference analysis (Eq. 3). The results are shown
in Table 9 and quantify the similarities and differences in the
membership to the two classes of forest in this study. This
provides a tractable and transparent method to move between
two classifications, regardless of their semantics. The off di-
agonals in Table 9 provide the equivalent of the losses and
gains, relative to the forest class under consideration and de-
scribe how the semantic boundaries between the two classes
intersect.

www.geogr-helv.net/73/151/2018/

Table 7. The fuzzy difference matrix with loss and gain for the
worked example.

a b c Loss Gain
a 477 000 0.00 0.00 0.00
b 000 444 0.09 0.09 0.00
¢ 000 000 438 000 0.09

Table 8. The summaries of the Fuzzy memberships GLC and FAO
derived Forest classes.

GLC FAO

derived derived

forest forest

Min. 0.04 0.02
1st Qu. 0.14 0.17
Median 0.36 0.68
3rd Qu. 0.57 0.79
Max. 0.91 0.98
Total 42234.84 63378.22

5 Discussion

The REDD+ programme aims to reduce carbon emissions
from deforestation and forest degradation. A key tenet of the
programme is to financially reward less developed countries
for their preservation (or increase) of forest stocks. However,
any mapping, including land cover mapping, is only a repre-
sentation of some view of reality (Comber et al., 2005) and
different views of reality exist between and within different
stakeholders and communities, whether they be citizens, sci-
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Figure 5. Detail around Atlanta, Georgia of the differences in the fuzzy memberships to the GLC (red) and FAO (blue) forest classes, with a

map of difference, yellow indicating similar fuzzy membership values, red where GLC fuzzy forest memberships are greater and blue where
FAO are greater.
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Figure 6. The boundary conditions between forest and not-forest arising from the differently defined forest classes, with context from an
Open Street Map backdrop. The fuzzy GLC forest is mapped in red and the FAO fuzzy forest class is mapped in blue, both with a transparency

term.

Table 9. The fuzzy difference matrix for the GLC (rows) and FAO
(columns) classifications of forest.

Forest Not-forest
Forest 42016.14 218.71
Not-forest 21362.08 50417.08

entists or involved in policy making (see Harvey and Chris-
man, 1998 for the classic example of the negotiation of the
differences in land cover definitions).

The problems for REDD+ are two-fold. First, differences
in definitions of forest influence the amount of forest that is
mapped, and therefore measures of carbon storage. This un-
dermines the ambitions of REDD+. For example, Romijn et
al. (2013) found that different definitions of forest resulted
in different amounts of Indonesian deforestation being iden-
tified. They noted critically that any definition of forests that
is not adapted to national circumstances could lead to large
areas of deforestation being excluded and not accounted for
under the REDD+ scheme, confusing the carbon accounting.
Other research has identified similar problems in other ar-
eas (Van Noordwijk and Minang, 2009; Magdon et al., 2014;
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Gou, 2016). To better understand the implications and origins
of this confusion, some research has sought to unpick forest
classifications and how they relate to different management
objectives (Chazdon et al., 2016). Although these authors do
not refer to semantics, their study clearly shows how dif-
ferent forest semantics are driven by initiatives (such as the
IPCC, biodiversity conventions, or agroforestry fora), noting
that the presence of different management objectives pro-
vides a perspective from which specific definitions are cre-
ated” (p. 539). Second, REDD+- forest mapping activities are
being used to impose a specific view of the landscape, often
at the expense of communities who live and work in forested
areas (e.g. Bong et al., 2016). These communities, although
key stakeholders, are frequently excluded and marginalized
from the REDD+ mapping process, receiving little or none
of the financial rewards, and often suffering from opportunis-
tic land reforms arising on the back of REDD+-. There is
plenty of evidence of this situation in the literature from all
over the world (e.g. Gizachew et al., 2017, Astuti and Mc-
Gregor, 2017; Larson et al., 2013; Sunderlin et al., 2014;
Lyster, 2011; Ezzine-de-Blas et al., 2011; Duchelle et al.,
2014). A data primitive approach to mapping, linked to fuzzy
sets, allows for varying (vague and ambiguous) interpreta-
tions of the concept of “forest” to be simultaneously repre-
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sented and mapped as well as the landscape more generally.
This approach allows the divergence and plurality of con-
cepts of forest to be simultaneously accommodated within
the mapping and measurement of forest. It is sensitive to and
supports local semantics and landscape conceptualisations in
spatial data and mapping, while at the same time allowing
parallel external or standardised view of landscapes, such as
are required for REDD+-.

Further work will explore how such approaches can be
used to link across divergent classification systems, to sup-
port methods for spatial data integration. It will also inves-
tigate the sensitivity of the methods and results to different
fuzzy exponent values, which is the main factor that controls
the degree of fuzziness or hardness in the outputs. There is
also a need to look at the data on which the fuzzy classifier
is trained — here medians were used — but the full distribu-
tion of values in different data primitive dimensions could be
explored. There are also opportunities to consider how this
approach could be further extended into considerations of
fuzzy change for analysing temporal change between differ-
ent (n) classifications with different classes — a sort of type-n
fuzzy set problem. This would help to determine the direc-
tions of “forestness” transitions, for example to quantify the
success of restoration or increasing carbon stocks with the
stand age. Finally, there are opportunities to extend this ap-
proach to other approaches that generate beliefs such as those
based on probabilities.

This paper has shown how data primitives and fuzzy inter-
sections can be used to support alternative mappings of the
same feature (in this case forest) based on different seman-
tics and concepts. The methods allow the differences be-
tween stocks of forest to be quantified when different for-
est classifications are applied. The data primitive approach
defines each forest class in terms of their positions in dif-
ferent dimensions: here measures of soil wetness, vegetation
height, biomass, human disturbance and seasonality were
used. These provide a common set of orthogonal data layers
(GIS field layers) and are fully described in Comber (2008)
and Wadsworth et al. (2008). Fuzzy intersection methods
(Fisher et al., 2006b) were used to quantify the overlaps
between the classes, specifically fuzzy bounded difference.
Representing forest classifications using fuzzy sets allows
the inherent uncertainty in the classification procedure to be
represented as well as the inherent vagueness and ambiguity
in forest definitions. Some of this may be due to image or
pixel uncertainty but also to variations in the semantics and
concepts of forest held by different groups and stakeholders
in the REDD+ process. This method allows the plurality of
forest definitions to be simultaneously represented in spatial
data, whatever the local definition of forest is. Thus, differ-
ent classifications, resulting from diverse conceptualizations

of landscape features such as forest can be overcome, not
through standardization (see Comber et al., 2007) as argued
by many in the policy arena and the remote sensing commu-
nity, but by accommodating divergent “soft”, fuzzy classi-
fications and mappings. Crucially, such an approach to for-
est mapping does not rely on any boundaries, be they crisp
or vague. It only requires the ability to characterize classes
within the dimensions of the data primitives in the “forest-
ness” vector field. The methods described in this paper could
be used in the context of REDD+ initiatives to support multi-
ple views of the same landscape. Such transparency can over-
come some of the problems of exclusion and back door land
reforms that are commonly experienced during REDD+- ini-
tiatives and mapping (Ezzine-de-Blas et al., 2011), as well
as the issues highlighted by Romijn et al. (2013) of how to
define forest. In our approach, one can define forest however
one wants and link it to another definition.

All of the analyses and maps in this paper were
undertaken in R, the open source statistics software. The code and
data used to construct this analysis as well as the RMarkdown file
used to create this paper are freely available at https://github.com/
lexcomber/ForestPaper.

Some of the ideas in this work were devel-
oped under a Joint Nature Conservancy Committee project “Fuzzy
approaches for Developing and Evaluating Earth Observation-
enabled ecological land cover time series system” (JNCC
Reference: C12-0171-0589). The authors would like to thank
Ross Purves and his team for their invitation to take part in
a workshop in 2016, which led to the further development of
these ideas. Lex Comber would like to thank the late and great
Pete Fisher for the germ of the ideas in this paper: these were taken
from work that he and Pete never managed to finish. Werner Kuhn
acknowledges support from the University of California, Santa
Barbara, for the Center of Spatial Studies.
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