stehung der alpinen Randseen. Ecl. geol. Helv. Bd. 31. — Stein, M. (1948): Morphologie des Glattales. Diss. Univ. Zürich. — Tanner, H. (1944): Beitrag zur Geologie der Molasse zwischen Ricken und Hörnli. Mitt. d. Thurg. N. G., Heft 33. — WETTSTEIN, A. (1885): Geologie von Zürich und Umgebung. Diss. Univ. Zürich. — ZINGG, TH. (1934): Erläuterungen zu Atlasblatt 7 (Mönchaltorf, Hinwil, Wädenswil, Rapperswil) d. geol. Atlas d. Schweiz, mit Karte.

LES TERRASSES À PENTE INVERSE DES BORDS DU LAC DE ZURICH ET LEURS RELATIONS AVEC LA MOLASSE

L'article traite de la nature des terrasses à pente inverse signalées au bord du lac de Zurich. Contrairement aux régions environnantes, les dépôts glaciaires y manquent à peu près totalement. Le sol est formé par la molasse, roche typique du Miocène supérieur. L'érosion glaciaire y a sculpté les formes. Les terrasses sont donc des "banquettes", formées par les couches dures (poudingues et grès) de la molasse découvertes par l'action sélective des glaciers. Ce ne sont donc pas des restes de fonds de vallées antérieures. Nous n'avons trouvé aucune preuve d'un affaissement des Alpes pendant le Quartenaire, évènement qui, selon Heim, serait la cause de la pente inverse des terrasses. Celles-ci sont situées sur le flanc Sud de l'anticlinal molassique de Käpfnach-Grüningen.

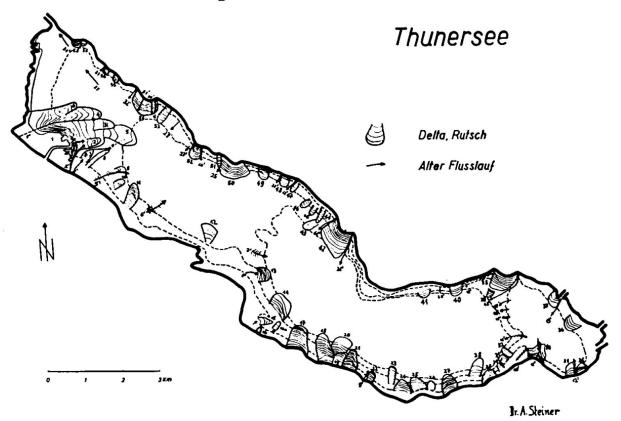
I TERRAZZI RETROGRADI DEL LAGO DI ZURIGO E LA LORO RELAZIONE CON LA GEOLOGIA DELLA MOLASSA

Si discute la natura dei terrazzi cosiddetti retrogradi presenti nella vallata del Lago di Zurigo. In contrasto con le regioni circostanti, vi mancano in modo quasi completo i depositi glaciali. La molassa, tipica roccia del miocene superiore, vi forma direttamente il sottosuolo. È una regione di erosione glaciale. I terrazzi risultano di strati duri della molassa (Nagelfluh e arenarie) rimasti meno intaccati dall'azione erosiva selettiva del ghiacciaio: non si tratta dunque di fondi di valli anteriori. Non si è infatti trovato nessun indizio che stesse a dimostrare un abbassamento delle Alpi durante il quaternario, fenomeno che secondo Heim dovrebbe essere considerato come causa della retrocessione dei terrazzi. I terrazzi in parola sono situati sul fianco sud dell'anticlinale molassica di Käpfnach-Grüningen.

DIE ZUSCHÜTTUNG DES THUNERSEES

ALFRED STEINER

Als Teil des oberen Aaretales ist das Seebecken des Thunersees, wie alle Formen der Erde, in steter Umbildung begriffen. Ein Vorgang dieser Umbildung, nämlich die Zuschüttung, findet in dieser Arbeit besondere Beachtung.


DIE NEUE THUNERSEEKARTE 1:25 000

Meine Arbeit stützt sich auf die neue Thunerseekarte 1:25 000 der eidg. Landestopographie, die nicht veröffentlicht wird, aber als Grundlage für die Landeskarte 1:50 000 dient. Die bisherigen Kartendarstellungen des Thunersees geben nur in großen Zügen die Form der Seewanne wieder, ohne jegliche Einzelheiten des Reliefs. Einzig die großen Deltas sind darin zu erkennen. Umso mehr Beachtung verdient deshalb die Karte, die durch Herrn A. Charles, stellvertretender Leiter des techn. Dienstes der Landestopographie in Bern in den Jahren 1946 bis 1949 neu gelotet und völlig neu gezeichnet wurde. Die bisherigen Karten wurden auf Grund von 408 Lotungen total oder 8 pro km² gezeichnet, wobei die Anordnung der Lotungen meistens querschnittartig erfolgte. Völlig anders ist Herr Charles vorgegangen, indem er, sobald sich eine Besonderheit des Reliefs zeigte, in nächster Umgebung davon viele Lotungen durchführte, total 2155 oder 45 pro km². Dadurch ist eine Karte mit einem großen Reichtum an Einzelformen geschaffen worden.

DAS GESAMTVOLUMEN DES SEES

Um mir über die vertikale Gliederung einer glazialen, der Zuschüttung ausgesetzten Seewanne genauere Kenntnis zu verschaffen, berechnete ich die Isobathen-flächen von 345 m ü. M. bis zur Oberfläche des Sees in 558 m. Anhand dieser horizontalen Flächenabschnitte (siehe Tab. 1) habe ich in der heutigen Seewanne eine Dreiteilung in der Vertikalen vorgenommen, die ich als 1. Deltazone; 2. Mittelzone; 3. Bodenzone bezeichne.

1. Als Deltazone fasse ich die Zone mit den breiten sublakustren Terrassen auf. Am stärksten sind sie ausgebildet als alluviale Inundationsterrassen beim Bödeli und bei Thun, sowie als diluviale Inundationsterrasse bei Einigen, Langmaad und Faulensee, das heißt am südlichen Seeufer. Sie fehlen völlig am steilen Nordufer. In der Deltazone ist die Zuschüttung am intensivsten.

Das Relief der heutigen Thunerseewanne wird belebt durch viele Deltas und alte Flußrinnen, die ich auf Grund der neuen Auslotung des Sees in dieser Karte eingezeichnet habe.

Tabelle 1 Isobathenflächen des Thunersees

Isobathen	Fläche in km²	Zonen von 10 zu 10 m	Zonen von 20 zu 20 m	Bemerkungen
558 m	47,993	_	_	
(Gesamtfl.)	,			
550 m	45,540	2,453	_	
540 m	44,107	1,433	3,886	
530 m	42,790	2,317	<u> </u>	Deltazone
520 m	41,566	1,224	3,541	
510 m	40,153	1,411	<u> </u>	
500 m	38,443	1,710	3,123	
490 m	35,939	2,504	<u> </u>	
480 m	34,332	1,607	4,111	
470 m	33,189	1,143	_	
460 m	32,086	1,103	2,246	
450 m	31,758	0,328		
440 m	29,903	1,855	2,183	
430 m	28,592	1,311	-	Mittelzone
420 m	27,065	1,527	2,838	
410 m	25,696	1,369	_	
400 m	24,122	1,574	2,943	
390 m	22,334	1,788	_	
380 m	20,321	2,013	3,801	
370 m	17,928	2,393		
360 m	13,900	4,028	6,421	Bodenzone
350 m	7,969	5,931	_	
345 m	6,215	1,754	7,685	

Blick vom Strättliger Hügel auf den östlichen Teil des Kandergriens. Der ältere Teil des Deltas ist bewaldet. Gegenüber Oberhofen; rechts der schneebedeckte Sigriswiler Grat.

Photo A. Steiner, 6. April 1952

- 2. Die Mittelzone begrenze ich durch die Isobathen von 390 m und 470 m ü. M. Sie besteht aus den beiden glazial geschliffenen, stark durchtalten, ehemaligen Talflanken, die sich durch große Steilheit zu erkennen geben. Die östliche Abgrenzung gegen das Bödeli zeigt eine steile, stark durchtalte Felsschwelle, deren östliche Abdachung vom Bödelidelta völlig verdeckt ist. Diese Feststellung dürfte neu sein, denn in der Literatur wird nirgends auf die Existenz eines solchen Talriegels hingewiesen. Das Vorhandensein eines solchen Felsriegels erklärt jedoch gut das rasche Wachstum des Bödeli.
- 3. Die Bodenzone ist durch große Flächen und geringe Neigung ausgezeichnet und ist der Bereich der Zuschüttung durch Schlamm. Bei der neuen Lotung sind in dieesr Zone viele Messungen gemacht worden, ohne daß sich ein Relief ergeben hätte. Der wirkliche Wannenboden ist also durch Schotter und Schlamm verhüllt. (Albert Heim berechnete, daß im Urnersee die Verschlammung ¼ der gesamten Geschiebeführung der Reuß ausmacht.)

Die Veränderungen in der Delta- und Bodenzone (durch Geschiebe und Schlamm) zeigen uns, daß die Zuschüttung eines Alpenrandsees sowohl von oben nach unten, wie von unten nach oben erfolgt.

Aus den Isobathenflächen ergibt sich ein Volumen des heutigen Sees von 6 579 Mill. m³. Seine größte Tiefe beträgt 241 m, seine mittlere Tiefe 137 m. Vergleichen wir: mittlere Tiefe: mittlere Breite: mittlere Länge, erhalten wir ein Verhältnis von 1:20:129. Der See ist also 20 mal breiter als tief und 129 mal länger als tief, d. h. eine sehr flache Glazialwanne.

Tabelle 2 Messungen am Thunersee

								0					
Länge							17,650 km	Gesamtfläche					47,993 km²
							2,710 km	Volumen .					6,579 km ⁸
Größte	Tie	fe					214 m	Uferlänge .				٠	42,900 km
Mittlere	Ti	efe		-	-		137 m	2000 2000					

Flugaufnahme des Kanderdeltas. Man erkennt in der Bildmitte die in verschiedene Arme aufgelöste heutige Kandermündung. (Typische Form eines jungen Deltas.) (Reproduziert mit Bewilligung der Eidg. Landestopographie vom 18. 2. 53)

DAS KANDERDELTA

Das Kanderdelta verdient in der Morphologie besondere Beachtung, weil wir seine Entstehung kennen und seine Entwicklung verfolgen können. Bis zum Jahre 1714 floß die Kander durch das Glütschbachtälchen über den hintern Teil des Exerzierplatzes der Thunerallmend und mündete nach Uttigen in die Aare. In der Nähe der alten Kander mündet die Zulg von Osten her. Die großen Geschiebemengen dieser beiden Zuflüsse stauten die Aare und setzten die ganze Gegend nördlich von Thun der Gefahr der Versumpfung aus. In der Zeit von 1711 bis 1714 erfolgte der Durchstich durch den Strättliger Hügel, wodurch die Kander dem Thunersee zugeführt wurde.

Über den Flächenwachstum des Deltas sind uns folgende Angaben bekannt: $222\ 800\ m^2$ 1716 auf einem Plan des neuen Kanals nach Rüdiger

478 700 m² 1740 Bachmann: Die Kander pg. 41, 1869

 $619\ 200\ m^2$

Karte von Lanz 1777

 $648\ 000\ m^2$ 1857 topographische Aufnahmen

1879 762 600 m² Steck: Die Denudation im Kandergebiet pg. 6, 1891

1901 1150 400 m² laut unseren Berechnungen 1949 1313 300 m² laut unseren Berechnungen

Für meine Berechnungen verwendete ich folgende Karten:

1. JACKY und LINDT, Tiefenkarte des Thuner- und Brienzersees 1866 1:50 000, Äquidistanz 30 m; 2. Topogr. Karte, Spezialausschnitt Kanderdelta 1:25 000, Äquidistanz 10 m; 3. Topogr. Karte, Neulotung 1946-1949 von A. CHARLES 1:25 000, Aquidistanz 10 m.

1. Das Kanderdelta 1866 ist deutlich im Kartenbild wahrnehmbar zwischen 470 m bis 560 m ü. M. Die Isobathen haben Abstände von 30 m und erlauben deshalb nur das Volumen des Deltas zu berechnen, nicht aber Einzelheiten seines

Reliefs darzustellen. Dagegen ist der Durchbruch durch den Strättligerhügel gut erkennbar. (Kubatur siehe Tab. 3.)

- 2. Das Kanderdelta 1901 läßt sich in der Karte von 564 m bis 440 m nachweisen. Die Gesamtform ist noch völlig undifferenziert, Rutsche und alte Kanderrinnen sind nicht sichtbar. Die Kubatur ergibt einen ordentlichen Zuwachs (Tab. 3).
- 3. Das heutige Kanderdelta. Eine Überraschung bringt uns die neue Kartendarstellung. Außer dem Hauptdelta, das flach aus der Seefläche herausragt, dann aber ziemlich steil abfällt, erkennt man 2 alte Kanderrinnen, von denen die westliche stark eingeschnitten und trotz der Aufschüttung heute noch deutlich wahrnehmbar ist. Auf Grund dieser beiden alten, in dieser Arbeit zum ersten Mal erwähnten Kanderrinnen, kann man schließen, daß die Kander schon zweimal an fast der gleichen Stelle in einen früheren, tiefer gelegenen See oder Fluß mündete. Einer spätern Arbeit bleibt vorbehalten, näheres über das Alter dieser beiden Kanderläufe auszuführen. Ihre Existenz verdient besondere Beachtung, da sie wertvolle Tatsachen für die Talgeschichte des Thunersees liefern könnte. Dazu kommen noch 5 zungenförmige Rutsche im Seebecken, die alle in der Richtung des größten Gefälles erfolgt sind.

Über die Kubatur des Hauptdeltas, sowie der andern Teile gibt die Tabelle I (im Anhang) Auskunft.

Tabelle 3 Wachstum des Kanderdeltas

Nr. Jahr von bis Meter ü. M. Vol. in Mill. m⁸

1 1866 470—560 17 030
2 1901 440—564 22 882

3 1949 405-560 32 685

Zunächst zeigt diese Tabelle einen stetigen Wachstum des Deltas. Als genaueste Zahl darf die letzte gelten. Für die Kartendarstellung des Deltas wurden 1866

8 Lotungen, 1901 deren 15 und 1949 deren 121 gemacht.

SEESPIEGELSCHWANKUNGEN

- 1. Die Flußrinnen Nr. 7, 20, 21 und ev. Nr. 10 bis 18 (Tab. II im Anhang) deuten auf eine Durchtalung bis in eine Tiefe von 360 m hin, wodurch auf eine starke interglaziale Ausräumung zu schließen wäre. Natürlich ist das Lesen und Deuten dieser alten Flußläufe durch die Schlammablagerung sehr erschwert und deshalb mit Irrtümern verbunden.
- 2. Ein zweiter Seestand läßt sich in einer Höhe von 420 m vermuten durch die Deltas, Nr. 13, 40, 41 und die Flußrinne Nr. 4.
- 3. Weitere Angaben deuten auf einen 3. Seestand in 510 m hin, nämlich Flußrinne Nr. 3, 34 und die Deltas Nr. 8, 15, 31, 44.

DIE ZUSCHÜTTUNG DES THUNERSEES

Nach meinen Berechnungen hat die Zuschüttung des Thunersees durch alle Zuflüsse bis heute eine Größe von 2,01% des ursprünglichen Volumens erreicht. Wenn man auch bei Seen von Jugendform, Reife und Greisenalter sprechen will, muß der Thunersee noch ganz der ersten, also der Jugendform zugeordnet werden. Die stetig fortschreitende Zuschüttung zeigt sich deutlich an den über dem Seespiegel sichtbaren Deltas. Ansätze von Hörnern und Lappen bestimmen bereits den Verlauf der Uferlinie. Außerdem breiten sich auf der Südseite des Sees sublacustre Terrassen aus.

Die Gesamtzuschüttung des Thunersees durch Deltabildung beträgt 136,191 Mill. m³. Dazu kommt die Verschlammung, die nach A. Heim beim Urnersee ¼ der gesamten Geschiebeführung ausmacht. Falls diese Angabe zutrifft und auf den

Thunersee angewendet werden darf, ergibt sich eine Schlammablagerung von ca. 45,4 Mill. m³.

Die bis heute erfolgte Auffüllung erstreckt sich schätzungsweise auf 10 000 Jahre. Das Gesamtbild der Zuschüttung hat sich jedoch seit dem Kanderdurchstich von 1714 grundlegend geändert. Der Fluß lagerte in der kurzen Zeit von 235 Jahren das bedeutende Delta von 32 685 Mill. m³ in den Thunersee ab. Er übernimmt damit 96,45 % der gesamten Geschiebeführung der Thunerseezuflüsse.

Tabelle 4 Kubatur des Kanderdeltas

Jahr	Größe des Deltas in m8	Wachstum pro Jahr in m8
1714	_	_
1866	17 030 000	112 040
1901	22 082 000	167 200
1949	32 685 000	204 230
1714-1949	32 685 000	139 090

Von den obigen Zahlenangaben darf die letzte als die genaueste betrachtet werden.

Mit der Aufschüttung verbunden ist ein allgemeiner Abtrag des Einzugsgebietes. Meine Berechnungen ergeben pro km² Fläche des Einzugsgebietes des Thunersee einen jährlichen Abtrag von 131 m³.

Vergleich mit anderen See	n Jahre	Jährl. Abtrag pro	km ² in m ³
Aare in den Bielersee	1897—1913	112	
Linth in den Walensee	1860—1911	119	
Rhein in den Bodensee	1900-1911	94,7	
Kander in den Thunersee	1714—1860	362 nach	COLLET
Kander in den Thunersee	1714-1949	131 nach	STEINER

Die Angabe von Collet beruht auf einer falschen Berechnung der Kubatur des Kanderdeltas.

Aus Tab. II (im Anhang) ist ersichtlich, daß das heutige Seebecken mindestens 58 Schuttfächer und 36 alte Flußrinnen aufweist, die hier zum ersten Mal erwähnt werden. Diese Deltas und Rutsche schwanken zwischen 189 000 m³ und 28 570 000 m³. Neben dem größten und jüngsten Delta, demjenigen der Kander, ist das Grönbachdelta in der gleichen Größenordnung zu erwähnen. Der Grönbach entwässert das Justistal und gelangt durch eine tiefe Erosionsschlucht bei Merligen in den Thunersee. Größere Deltas bilden ferner der Gunten-, Riedern-, Sundlauenen- und Krattigbach.

Zum Schluß füge ich meinen Berechnungen noch eine Abschätzung über die Zeitdauer der völligen Zuschüttung des Thunersees bei. Berücksichtigt man die Schlammablagerung, so ergibt sich eine Zeitspanne von ca. 36 000 Jahren, bis der schöne Alpenrandsee zwischen Interlaken und Thun verschwunden sein wird.

ANHANG

Tabelle I Die alten Flußrinnen im Thunerseebecken

Nr.	Bezeichnung	von bis m ü. M.	Gefälle in ⁰ / ₀	
1	alte Kanderrinne Nr. 1	435—550	0,71	unterster Teil durch Rutsche zugedeckt
2	alte Kanderrinne Nr. 2	470 - 540	1,60	stark eingeschnitten
3	alter Flußlauf ev. Kanderrinne Nr. 3	520-540	1,60	Fortsetzung: ein Delta
4	alte Flußrinne bei Einigen ev. Kander-			_
	rinne Nr. 4?	425—440	0,40	oben durch Delta zugedeckt
5	Rinne beim Tellerhof	410-440	1,20	ev. oberster Teil zwischen 510 u. 540m
6	alte Rinne des Schwarzbachs	385-450	1,37	
7	kleine Flußrinne bei Spiez	360 - 400	1,33	
8	Flußrinne bei Spiez	430 - 480	1,67	mit anschließendem Delta
9	alte Flußrinne des Fritzensbaches	460690	4,38	
10	alte Marchbachrinne im Bödelidelta	500—545	0,95	Fortsetzung durch jungpleistozäne Terrasse zugedeckt

Nr.	Bezeichnung	von bis m ü. M.	Gefälle	Bemerkurgen
11	alte Pudelbachrinne im Bödelidelta	540-560	1,77	durch Delta zugedeckt
12	alte Rinne östlich Därligen	500-550	4,80	
13	Flußrinne des Lombachs	500 - 560	1,50	
14	große Flußrinne im Bödelidelta	360-450	2,13	eventuell alte Lütschine
15	Rinne im Bödelidelta	360 - 440	3,20	
16	Flußrinne im Bödelidelta	350-450	4,00	
17	Flußrinne im Bödelidelta	370 - 480	2,46	
18	Flußrinne im Bödelidelta	360 - 560	1,67	eventuell alte Lombachrinne
19	Beatushöhle Ausmündung des Baches	370-400	4,00	
20	alte Flußrinne des Krutbaches	360-400	4,00	
21	alte Grönbachrinne Nr. 1	350-560	3,65	stark eingeschnitten
22	Rinne eines alten Grönbaches Nr. 2	370-560	3,83	
23	Rinne des Ralligenbachs	400 - 500	3,67	
24	Rinne des Stampbachs	400 - 520	4,37	
25	Rinne des Äschlenbachs	375560	3,70	
26	Ringolswilgraben	380-560	5,14	
27	vermutl. Flußrinne vom Örtliboden Nr.1	390-560	4,70	vom Delta zugedeckt
28	Flußrinne vom Örtliboden Nr. 2	390-530	4,00	
29	Flußrinne bei Längenschachen	440 - 530	5,60	
30	alte Riedenbachmündung Nr. 1	410 - 560	2,73	*
31	alte Riedenbachmündung Nr. 2	410-560	3,00	im Mittellauf zugedeckt
32	alte Riedenbachmündung Nr. 3	410 - 560		Mitte zugeschüttet
33	alte Riedenbachmündung Nr. 4	450 - 560	3,67	
34	Rinne des Horbbachs	480 - 560	3,50	
35	heutiger Abfluß des Sees	520 - 550		
36	Abfluß für Seehöhe 465 m	450 - 470		

Tabelle II Delta und Schuttfächer im Thunersee

	I abene II D	ina ina caming ac		
Nr.	Bezeichnung	von bis m ü. M.	Vol. in Mill. m ⁸	Bemerkungen
1	Hauptdelta der Kander	440-560	28,570	
2	Rutsch des Kanderdeltas	435-460	0,127	
3	33 33 35 37	440 - 460	0,189	
4	» » »	430 - 530	2,513	
4 5	" " "	405 - 430	.0,541	
6	n n n	460 - 480	0,252	
7	" " "	450 - 500	0,484	
	Total Kanderdelta		32,685	
8	Rutsch bei Einigen	430-510	0,442	
9	Flußdelta	410-430	0,252	darüber eine Flußrinne
10	Rutsch bei Teller	440 - 480	0,252	
11	Rutsch bei Ghei	405 - 500	0,378	
12	Rutsch bei Spiez	360 - 410	0,126	
13	Delta bei Faulensee	360 - 420	2,502	darüber eine Flußrinne
14	» » »	350 - 430	1,956	
15	22 22 22	470 - 510	0,189	
16	Delta des Baches bei 564 m	5 20 —560	0,189	
16a	Flußdelta	45 0 —490	0,189	
17	Delta des Krattigbaches	360 - 560	4,768	
18	Delta bei Kumm	350 - 560	4,162	
19	Delta	410-500	0,529	•
20	37	345 - 430	0,673	
21	,	36 0 —560	2,828	
22	>>	450 - 560	0,694	
23	Delta des Fritzensbaches	345 - 470	1,577	
24	Delta des Kreuzbaches	460 - 520	0,894	
25	2. Kreuzbachdelta	370-500	1,871	•
26	Delta des Riedbaches	410-500	0,505	
27	Delta des Spießbaches	360-560	1,219	
	Delta des Eibaches	350 - 450	0,955	
28	Deita des Bionesies			

Nr.	Bezeichnung	von bis m ü. M.	Vol. in Mill. m ⁸	Bemerkungen
30	Delta eines alten Marchbaches	400-530	0,326	
31	Delta	370 - 510	1,072	
32	Rutsch	360 - 470	0,757	
33	Delta des Pudelbaches	495-560	1,914	
34	Delta westlich der Aaremündung	500 - 560	0,477	
35	" " " "	520 - 560	0,588	
36	Delta bei Neuhaus	510-550	1,156	
37	Delta des Lombaches	510-550	1,156	
38	Delta des Sundlauenenbaches	460-510	4,941	
39	Rutsch des obigen Deltas	380 - 400	0,126	
40	Delta des Kühlauengrabens	360 - 420	1,368	
41	Delta beim Steinbruch Balmholz	350 - 420	0,442	
42	Delta des Grönbaches	360 - 550	24,770	
43	Deltarutsch westlich des Grönbaches	360 - 370	0,084	
44	Rutsch westlich des Grönbaches	370-520	0,410	
45	Delta der Gerbe	530 - 560	0,063	96
45a	Rutsch	370 - 480	0,205	
46	Rutsch	370 - 480	0,217	
47	Delta des Ralligenbachs	400 - 510	0,410	
48	Delta des Stampbaches	380-560	0,631	
49	altes Delta des Pfannenbachs	375 - 400	0,252	
50	Delta des Guntenbaches	370-560	16,615	
51	» » »	400 - 500	0,658	
52	Delta von Ringoldswil	390-560	3,400	
53	Delta Längenschachen	410 - 560	1,009	
54	Delta des Riedernbaches	420 - 560	10,738	
55	Rutsch	490 - 560	0,252	
56	Delta des jetzigen Horbbachs	500 - 560	0,315	
57	altes Delta des Kohlerenbachs	500 - 560	0,189	
58	Delta des Kohlerenbachs	520-560	0,441	

LITERATURVERZEICHNIS

BECK, P.: Die Grundzüge der Talbildung im Berneroberland, Eclogae Geologicae Helveticae 16, 1920—1922. — STECK, Th.: I. Die Wassermassen des Thuner- und Brienzersees, II. Die Denudation im Kandergebiet, XI. Jahresbericht der Geogr. Gesellschaft Bern 1891/1892. — BACHMANN, J.: Die Kander, Bern 1869. — HEIM, A.: Über die Erosion im Gebiet der Reuß, Jahrbuch des Schweizer Alpenklubs 1878/1879, Bern 1879.

LE COMBLEMENT DU LAC DE THOUNE

Cet essai s'occupe du problème du comblement d'un lac au pied des Alpes. Comme base pour les calculs morphométriques j'ai pris la carte du lac de Thoune (1:25 000), nouvellement établie en 1949, qui nous donne une vue absolument différente de la morphologie du bassin glaciaire d'un lac. D'après mes calculs, le comblement du lac de Thoune par tous ses affluents a atteint jusqu'au-jourd'hui une grandeur de 2,01% du volume postglacial. Le comblement par formation de deltas s'élève à 136,191 millions de m³, sans parler d'un dépôt de boue d'environs 45,4 millions de m³. A cela s'ajoute une érosion générale du bassin avoisinant, qui s'élève annuellement à 131 m³ par km² de surface. Le tableau II montre, que le bassin actuel du lac contient au moins 58 cônes de déjection et 36 anciens lits de rivières. Mes calculs permettent d'estimer, que le lac de Thoune sera entièrement comblé dans environs 36 000 ans.

L'ESTINZIONE PROGRESSIVA DEL LAGO DI THUN

L'Autore si propone di studiare il problema dell'estinzione progressiva di un lago subalpino. Per le sue considerazioni si è servito di una carta del lago di Thun disegnata nella scala di 1 a 25 000 in base ad una nuova e completa piombinazione effettuata durante il 1949, ciò che gli permette di farsi un'idea tutta nuova delle trasformazioni subite da un bacino lacustre glaciale. Secondo i calcoli dell'autore la riduzione del volume primitivo postglaciale del lago per opera degli affluenti non supera a tutt'oggi il 2,01%, percentuale attribuibile parte alla deltazione (136,191 milioni di m³) e parte alla sedimentazione marnosa per tutto il bacino (45,4 milioni di m³). Corrisponde all'estinzione del lago un livellamento annuale della zona d'alimentazione di 131 m³ su ogni km². La tavola II dimostra che il bacino lacustre nella sua forma attuale è caratterizzato da non meno di 58 ventagli alluvionali e rigato da ben 31 canali fluviali primitivi. Le deduzioni dell'autore lasciano prevedere l'estinzione totale del lago di Thun dopo un periodo di ca, 36 millenni.