Articles | Volume 80, issue 4
https://doi.org/10.5194/gh-80-339-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gh-80-339-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rockwall erosion rate inferred from in situ 10Be concentration of supraglacial clasts: a review
Léa Courtial-Manent
CORRESPONDING AUTHOR
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, 38000 Grenoble, France
EDYTEM, Université Savoie Mont-Blanc, CNRS (UMR 5204), 73370 Le Bourget du Lac, France
Jean-Louis Mugnier
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, 38000 Grenoble, France
Anta-Clarisse Sarr
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, 38000 Grenoble, France
Department of Earth Sciences, University of Oregon, Eugene, 97403 Oregon, United States
Ludovic Ravanel
EDYTEM, Université Savoie Mont-Blanc, CNRS (UMR 5204), 73370 Le Bourget du Lac, France
Julien Carcaillet
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, 38000 Grenoble, France
Riccardo Vassallo
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, 38000 Grenoble, France
Arthur Schwing
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, 38000 Grenoble, France
Related authors
No articles found.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev., 18, 6367–6413, https://doi.org/10.5194/gmd-18-6367-2025, https://doi.org/10.5194/gmd-18-6367-2025, 2025
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million-year timescales, including carbon and oxygen cycles, CO2, and climate. GEOCLIM is associated with a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations around 94 million years ago.
Nina M. Papadomanolaki, Anta-Clarisse Sarr, Anthony Gramoullé, Marie Laugié, Jean-Baptiste Ladant, and Yannick Donnadieu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3458, https://doi.org/10.5194/egusphere-2025-3458, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We model how geography and atmospheric CO2 changed circulation and oxygen concentrations prior to two deoxygenation events of the Cretaceous (severe) and Paleocene. Deep Cretaceous oxygen concentration are lower, but at shallower depths, the two simulations produce similar oxygen concentrations. At these depths, the Cretaceous seafloor likely fortified deoxygenation via sedimentary feedbacks. We show that geographical changes after the Paleocene further enhanced ocean oxygenation in our runs.
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637, https://doi.org/10.5194/egusphere-2025-637, 2025
Short summary
Short summary
Permafrost dynamics at Aiguille du Midi in the French Alps was investigated using Automated Electrical Resistivity Tomography (A-ERT) during four years. A-ERT reveals seasonal and multi-year permafrost changes. Temperatures estimated using resistivity measurements provide a good agreement with measured temperature in borehole in frozen zone. Variations in active layer thickness across different faces were observed, along with a slight decrease in permafrost resistivity suggesting warming.
Luc Beaufort and Anta-Clarisse Sarr
Clim. Past, 20, 1283–1301, https://doi.org/10.5194/cp-20-1283-2024, https://doi.org/10.5194/cp-20-1283-2024, 2024
Short summary
Short summary
At present, under low eccentricity, the tropical ocean experiences a limited seasonality. Based on eight climate simulations of sea surface temperature and primary production, we show that, during high-eccentricity times, significant seasons existed in the tropics due to annual changes in the Earth–Sun distance. Those tropical seasons are slowly shifting in the calendar year to be distinct from classical seasons. Their past dynamics should have influenced phenomena like ENSO and monsoons.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Jacques Mourey, Pascal Lacroix, Pierre-Allain Duvillard, Guilhem Marsy, Marco Marcer, Emmanuel Malet, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 22, 445–460, https://doi.org/10.5194/nhess-22-445-2022, https://doi.org/10.5194/nhess-22-445-2022, 2022
Short summary
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
Cited articles
Allen, P.: From landscapes into geological history, Nature, 451, 274–276, https://doi.org/10.1038/nature06586, 2008.
Anderson, R. S.: A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, J. Glaciol., 46, 459–469, https://doi.org/10.3189/172756500781833025, 2000.
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump, S. E.: Glaciation of alpine valleys: The glacier–debris-covered glacier–rock glacier continuum, Geomorphology, 311, 127–142, 2018.
Andersen, J. L., Egholm, D. L., Knudsen, M. F., Jansen, J. D., and Nielsen, S. B.: The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep, Earth Surf. Dynam., 3, 447–462, https://doi.org/10.5194/esurf-3-447-2015, 2015.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quatern. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Beaumont, C., Fullsack, P., and Hamilton, J.: Erosional control on active orogens, in: Thrust Tectonics, 1, edited by: McClay, K. R., 18, Springer, Dordrecht, https://doi.org/10.1007/978-94-011-3066-0, 1992.
Beel, C. R., Lifton, N. A., Briner, J. P., and Goehring, B. M.: Quaternary evolution and ice sheet history of contrasting landscapes in Uummannaq and Sukkertoppen, western Greenland, Quaternary Sci. Rev., 149, 248–258, https://doi.org/10.1016/j.quascirev.2016.05.033, 2016.
Benn, D. I. and Evans, D. J. A.: Glaciers & glaciation, in: 2nd Edn., Hodder education, London, https://doi.org/10.1111/j.1502-3885.2011.00212.x, 2010.
Benowitz, J. A., Layer, P. W., Armstrong, P., Perry, S. E., Haeussler, P. J., Fitzgerald, P. G., and VanLaningham, S.: Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range, Geosphere, 7, 455–467, https://doi.org/10.1130/GES00589.1, 2011.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012a.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quatern. Geochronol., 31, 188–198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Braucher, R., Colin, F., Brown, E. T., Bourlès, D. L., Bamba, O., Raisbeck, G. M., Yiou, F., and Koud, J. M.: African laterite dynamics using in situ-produced 10Be, Geochim. Cosmochim. Ac., 62, 1501–1507, https://doi.org/10.1016/S0016-7037(98)00085-4, 1998.
Braucher, R., Brown, E. T., Bourlès, D. L., and Colin, F.: In situ-produced 10Be measurements at great depths: implications for production rates by fast muons, Earth Planet. Sc. Lett., 211, 251–258, https://doi.org/10.1016/S0012-821X(03)00205-X, 2003.
Burbank, D. and Anderson, R.: Tectonic Geomorphology. Wiley-Blackwell, p. 476, ISBN 978-0-632-04386-6, 2011.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379, 505–510, https://doi.org/10.1038/379505a0, 1996.
Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J., Riquelme, R., Christophoul, F., Charrier, R., Gayer, E., Farías, M., Audin, L., and Lagane C.: Differences in 10Be concentrations between river sand, gravel and pebbles along the western side of the central Andes, Quatern. Geochronol., 27, 33–51, https://doi.org/10.1016/j.quageo.2014.12.002, 2015.
Cathala, M., Magnin, F., Ravanel, L., Dorren, L., Zuanon, N., Berger, F., Bourrier, F., and Deline, P.: Mapping release and propagation areas of permafrost-related rock slope failures in the French Alps: A new methodological approach at regional scale, Geomorphology, 448, 109032, https://doi.org/10.1016/j.geomorph.2023.109032, 2024.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.: Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Instrum. Meth. Phys. Res. Sect. B, 268, 15192–15199, 2010.
Codilean, A. T.: Calculation of the cosmogenic nuclide production topographic shielding scaling factor for large areas using DEMs, Earth Surf. Proc. Land., 31, 785–794, https://doi.org/10.1002/esp.1336, 2006.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in: Springer Series in Statistics, Springer, London. https://doi.org/10.1007/978-1-4471-3675-0, 2004.
Courtial-Manent, L., Ravanel, L., Mugnier, J.-L., Deline, P., Lhosmot, A., Rabatel, A., Duvillard, P.-A., and Batoux, P.: 18-years of high-Alpine rock wall monitoring using terrestrial laser scanning at the Tour Ronde east face, Mont-Blanc massif, Environ. Res. Lett., 19, 034037, https://doi.org/10.1088/1748-9326/ad281d, 2024a.
Courtial-Manent, L., Mugnier, J.-L., Ravanel, L., Carcaillet, J., Vassallo, R., Lhosmot, A., and Schwing, A.: Increased erosion rates on high-Alpine rockwalls evidenced by comparison of short-term (terrestrial LiDAR) and long-term (cosmogenic nuclides) approaches, in: EGU General Assembly 2024, Vienna, Austria, https://doi.org/10.5194/egusphere-egu24-17419, 2024b.
Courtial-Manent, L., Mugnier, J.-L., Ravanel, L., Carcaillet J., Deline, P., and Buoncristiani, J.-F.: A significant doubling of rockfall rates since the Little Ice Age in the Mont-Blanc massif, inferred from 10Be concentrations and rockfall inventories, Earth Planet. Sc. Lett., 651, 119142, https://doi.org/10.1016/j.epsl.2024.119142, 2025.
Culling, W. E. H.: Analytical theory of erosion, J. Geol., 68, 336–344, 1960.
Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R., and Arnaud, Y.: Region-wide annual glacier surface mass balance for the European Alps from 2000 to 2016, Front. Earth Sci., https://doi.org/10.3389/feart.2020.00149, 2020.
Deeken, A., Thiede, R. C., Sobel, E. R., Hourigan, J. K., and Strecker, M. R.: Exhumational variability within the Himalaya of northwest India, Earth Planet. Sc. Lett., 305, 103–114, https://doi.org/10.1016/j.epsl.2011.02.045, 2011.
Deline, P., Gardent, M., Magnin, F., and Ravanel, L.: The morphodynamics of the mont blanc massif in a changing cryosphere: a comprehensive review, Geograf. Ann. A, 94, 265–283, https://doi.org/10.1111/j.1468-0459.2012.00467.x, 2012.
Deline, P., Akçar, N., Ivy-Ochs, S., and Kubik, P. W.: Repeated Holocene rock avalanches onto the Brenva Glacier, Mont Blanc massif, Italy: A chronology, Quaternary Sci. Rev., 126, 186–200, https://doi.org/10.1016/j.quascirev.2015.09.004, 2015.
Delunel, R., Van der Beek, P., Carcaillet, J., Bourlès, D., and Valla, P.: Frost-cracking control on catchment denudation rates: Insights from in situ-produced 10Be concentrations in stream sediments (Ecrins–Pelvoux massif, French Western Alps), Earth Planet. Sci. Lett., 293, 72–83, 2010.
Delunel, R., Schlunegger, F., Valla, P. G., Dixon, J., Glotzbach, C., Hippe, K., Kober, F., Molliex, S., Norton, K. P., Salcher, B., Wittmann, H., Akçar, N., and Christl, M.: Late-Pleistocene catchment-wide denudation patterns across the European Alps, Earth-Sci. Rev., 211, 103407, https://doi.org/10.1016/j.earscirev.2020.103407, 2020.
DiBiase, R. A.: Short communication: Increasing vertical attenuation length of cosmogenic nuclide production on steep slopes negates topographic shielding corrections for catchment erosion rates, Earth Surf. Dynam., 6, 923–931, https://doi.org/10.5194/esurf-6-923-2018, 2018.
DiBiase, R. A., Neely, A. B., Whipple, K. X., Heimsath, A. M., and Niemi, N. A.: Hillslope morphology drives variability of detrital 10Be erosion rates in steep landscapes, Geophys. Res. Lett., 50, e2023GL104392, https://doi.org/10.1029/2023GL104392, 2023.
Dunai, T. J.: Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, ISBN 978-0-521-87380-2, 2010.
Dunne, J., Elmore, D., and Muzikar, P.: Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces, Geomorphology, 27, 3–11, https://doi.org/10.1016/S0169-555X(98)00086-5, 1999.
Dussauge, C., Grasso, J., and Helmstetter, A.: Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics, J. Geophys. Res., 108, 2001JB000650, https://doi.org/10.1029/2001JB000650, 2003.
Eugster, P., Thiede, R. C., Scherler, D., Stübner, K., Sobel, E. R., and Strecker, M. R.: Segmentation of the Main Himalayan Thrust Revealed by Low-Temperature Thermochronometry in the Western Indian Himalaya, Tectonics, 37, 2710–2726, https://doi.org/10.1029/2017TC004752, 2018.
Farber, D., Mériaux, A., and Finkel, R.: Attenuation length for fast nucleon production of 10Be derived from near-surface production profiles Earth Planet. Sc. Lett., 274, 295–300, 2008.
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas, Nat. Hazards Earth Syst. Sci., 12, 241–254, https://doi.org/10.5194/nhess-12-241-2012, 2012.
Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., and Stump, E.: Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters, J. Geophys. Res., 100, 20175–20191, https://doi.org/10.1029/95JB02150, 1995.
Gabet, E., Pratt-Sitaula, B., and Burbank, D.: Climatic controls on hillslope angle and relief in the Himalayas, Geology, 32; 629–632, https://doi.org/10.1130/G20641.1, 2004.
Gallach, X., Carcaillet, J., Ravanel, L., Deline, P., Ogier, C., Rossi, M., Malet, E., and Garcia-Sellés, D.: Climatic and structural controls on Late-glacial and Holocene rockfall occurrence in high-elevated rock walls of the Mont Blanc massif (Western Alps), Earth Surf. Process. Land., 45, 3071–3091, https://doi.org/10.1002/esp.4952, 2020.
Godon, C., Mugnier, J. L., Fallourd, R., Paquette, J. L., Pohl, A., and Buoncristiani, J. F.: The Bossons glacier protects Europe's summit from erosion, Earth Planet. Sc. Lett., 375, 135–147, https://doi.org/10.1016/j.epsl.2013.05.018, 2013.
Goehring, B. M., Muzikar, P., and Lifton, N. A.: An in situ 14C–10Be Bayesian isochron approach for interpreting complex glacial histories, Quatern. Geochronol., 15, 61–66, https://doi.org/10.1016/j.quageo.2012.11.007, 2013.
Gomez, B. and Small, R. J.: Medial moraines of the Haut glacier d'Arolla, Valais, Switzerland: debris supply and implications for moraine formation, J. Glaciol., 31, 303–307, 1985.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Granger, D. E., Kirchner, J., and Finkel, R.: Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment, J. Geol., 104, 249–257, 1996.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Guillon, H., Mugnier, J.-L., and Buoncristiani, J.-F.: Proglacial sediment dynamics from daily to seasonal scales in a glaciated Alpine catchment (Bossons glacier, Mont Blanc massif, France), Earth Surf. Proc. Land., 43, 1478–1495, https://doi.org/10.1002/esp.4333, 2017.
Hales, T. C. and Roering, J. J.: Climatic controls on frost cracking and implications for the evolution of bedrock landscapes, J. Geophys. Res., 112, F02033, https://doi.org/10.1029/2006JF000616, 2007.
Hantz, D., Corominas, J., Crosta, G. B., and Jaboyedoff, M.: Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis, Geosciences, 11, 158, https://doi.org/10.3390/geosciences11040158, 2021.
Hauke, J. and Kossowski, T.: Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data, Quaestiones Geographicae, 30, 87–93, https://doi.org/10.2478/v10117-011-0021-1, 2011.
Heimsath, A. M. and McGlynn, R.: Quantifying periglacial erosion in the Nepal high Himalaya, Geomorphology, 97, 5–23, https://doi.org/10.1016/j.geomorph.2007.02.046, 2008.
Heisinger, B., Niedermayer, M., Hartmann, F. J., Korschinek, G., Nolte, E., Morteani, G., Neumaier, S., Petitjean, C., Kubik, P., Synal, A., and Ivy-Ochs, S.: In situ production of radionuclides at great depths. Nucl. Instrum. Meth. Phys. Res. Sect. B, 123, 341–346, https://doi.org/10.1016/S0168-583X(96)00702-1, 1997.
Hindmarsh, R.: A numerical comparison of approximations to the Stockes equation used in ice sheet and glacier modeling, J. Geophys. Res., 109, F01012, https://doi.org/10.1029/2003JF000065, 2004.
Jouvet, G. and Cordonnier, G.: Ice-flow model emulator based on physics-informed deep learning, Cambridge University Press, 1–15, https://doi.org/10.1017/jog.2023.73, 2023.
Jouvet, G. and Funk, M.: Modelling the trajectory of the corpses of mountaineers who disappeared in 1926 on Aletschgletscher, J. Glaciol., 60, 255–261, 2014.
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands, Earth Surf. Proc. Land., 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013.
Kober, F., Hippe, K., Salcher, B., Ivy-Ochs, S., Kubik, P. W., Wacker, L., and Hählen, N.: Debris-flow–dependent variation of cosmogenically derived catchment-wide denudation rates, Geology, 40, 935–938, https://doi.org/10.1130/G33406.1, 2012.
Kohn, B., Ketcham, R., Vermeesch, P., Boone, S., Hasebe, N., Chew, D., Bernet, M., Chung, L., Danisik, M., Gleadow, A., and Sobel, E.: Interpreting and reporting fission-track chronological data, Geol. Soc. Am. Bull., https://doi.org/10.1130/B37245.1, 2024.
Kořínková, D., Svojtka, M., and Kalvoda, J.: Rate of erosion and exhumation of crystalline rocks in the Hunza Karakoram defined by apatite fission track analysis, Acta Geodynam. Geomater., 11, 1–17, https://doi.org/10.13168/AGG.2014.0010, 2014
Korschinek, G., Bergmaier, A., Faesterman, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, C., Kossert, K., Maiti, M., Poutivsev, M., and Remmert, A.: A new value for the half-life of 10Be by heavy-Ion elastic recoil detection and liquid scintillation counting, Nucl. Instrum. Meth. Phys. Res. Sect. B, 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., 38, 876–887, 2013.
Legay, A., Magnin, F., and Ravanel, L.: Rock temperature prior to failure: analysis of 209 rockfall events in the Mont Blanc massif (Western European Alps), Permafrost Periglac. Process., 32, 520–536, 2021.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lliboutry, L. and Reynaud, D.: “Global dynamics” of a temperate valley glacier, Mer de Glace, and past velocities deduced from Forbes' bands, J. Glaciol., 27, 207–226, ]doi10.3189/S0022143000015367, 1981.
Löfgren, A., Zwinger, T., Råback, P., Helanow, C., and Ahlkrona, J.: Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice, The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, 2024.
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, 2017.
Magnin, F., Ravanel, L., Bodin, X., Deline, P., Malet, E., Krysiecki, J., and Schoeneich, P.: Main results of permafrost monitoring in the French Alps through the PermaFrance network over the period 2010–2022, Permafrost Periglac., 35, 3–23, https://doi.org/10.1002/ppp.2209, 2023.
Marrero, S. M., Phillips, F. M., Borchers, B., Lifton, N., Aumer, R., and Balco, G.: Cosmogenic nuclide systematics and the CRONUScalc program, Quatern. Geochronol., 31, 160–187, https://doi.org/10.1016/j.quageo.2015.09.005, 2016.
Martin, L. C. P., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quatern. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Masarik, J., Kollar, D., and Vanya, S.: Numerical simulation of in situ production of cosmogenic nuclides: Effects of irradiation geometry, Nucl. Instrum. Meth. Phys. Res. B, 172, 786–789, https://doi.org/10.1016/S0168-583X(00)00121-X, 2000.
Matmon, A., Haeussler, P. J., and Team, A.: Sediment sources and transport by the Kahiltna Glacier and other catchments along the south side of the Alaska Range, Alaska, Geosphere, 16, 787–805, https://doi.org/10.1130/GES02190.1, 2020.
Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and thickness of the world's glaciers. Nat. Geosci., 15, 124–129, https://doi.org/10.1038/s41561-021-00885-z, 2022.
Nichols, K. K., Bierman, P. R., Eppes, M. C., Caffee, M., Finkel, R., and Larsen, J.: Timing of surficial process changes down a Mojave Desert piedmont, Quatern. Res., 68, 151–161, https://doi.org/10.1016/j.yqres.2007.02.001, 2007.
Nocquet, J.-M, Sue, C., Walpersdorf, A., Tran, D., Lenôtre, N., Vernant, P., Cushing, E., Jouanne, F., Masson, F., Baize, S., Chery, J., and Beek, P.: Present-day uplift of the western Alps, Nat. Sci. Rep., 6, https://doi.org/10.1038/srep28404, 2016.
Norton, K. P. and Vanacker, V.: Effects of terrain smoothing on topographic shielding correction factors for cosmogenic nuclide-derived estimates of basin-averaged denudation rates, Earth Surf. Proc. Land., 34, 145–154, https://doi.org/10.1002/esp.1700, 2009.
Orr, E. N., Owen, L. A., Saha, S., and Caffee, M. W.: Rates of rockwall slope erosion in the upper Bhagirathi catchment, Garhwal Himalaya, Earth Surf. Proc. Land., 44, 3108–3127, https://doi.org/10.1002/esp.4720, 2019.
Orr, E. N., Owen, L. A., Saha, S., Hammer, S. J., and Caffee, M. W.: Rockwall Slope Erosion in the Northwestern Himalaya, J. Geophys. Res.-Earth, 126, https://doi.org/10.1029/2020JF005619, 2021.
Puchol, N., Lavé, J., Lupker, M., Blard, P. H., Gallo, F., France-Lanord, C., and Team ASTER: Grain-size dependent concentration of cosmogenic 10Be and erosion dynamics in a landslide-dominated Himalayan watershed, Geomorphology, 224, 55–68, https://doi.org/10.1016/j.geomorph.2014.06.019, 2014.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the `Little Ice Age', Holocene, 21, 357–365, https://doi.org/10.1177/0959683610374887, 2011.
Ravanel, L. and Deline, P.: A network of observers in the Mont-Blanc massif to study rockfall from high Alpine rockwalls, Geografia Fisica e Dinamica Quaternaria, 151–158, https://doi.org/10.4461/GFDQ.2013.36.12, 2013.
Ravanel, L., Allignol, F., Deline, P., Gruber, S., and Ravello, M.: Rock falls in the Mont Blanc Massif in 2007 and 2008, Landslides, 7, 493–501, https://doi.org/10.1007/s10346-010-0206-z, 2010.
Ravanel, L., Duvillard, P.-A., Astrade, L., Faug, T., Deline, P., Berthet, J., Cathala, M., Magnin, F., Baratier, A., and Bodin, X.: The Taconnaz Rockfall (Mont-Blanc Massif, European Alps) of November 2018: A Complex and At-Risk Rockwall-Glacier-Torrent Morphodynamic Continuum, Appl. Sci., 13, 9716, https://doi.org/10.3390/app13179716, 2023.
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya, Earth Planet. Sc. Lett., 430, 427–438, 2015.
Sarr, A. -C., Mugnier, J. -L., Abrahami, R., Carcaillet, J., and Ravanel, L.: Sidewall erosion: Insights from in situ-produced 10Be concentrations measured on supraglacial clasts (Mont Blanc massif, France), Earth Surf. Proc. Land., 44, 1930–1944, https://doi.org/10.1002/esp.4620, 2019.
Schaefer, J. M., Codilean, A. T., Willenbring, J. K., Lu, Z.-T., Keisling, B., Fülöp, R.-H., and Val, P.: Cosmogenic nuclide techniques, Nat. Rev. Meth. Primers, 2, 18, https://doi.org/10.1038/s43586-022-00096-9, 2022.
Scherler, D. and Egholm, D. L.: Production and Transport of Supraglacial Debris: Insights From Cosmogenic 10Be and Numerical Modeling, Chhota Shigri Glacier, Indian Himalaya, J. Geophys. Res.-Earth, 125, https://doi.org/10.1029/2020JF005586, 2020.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Hillslope-glacier coupling: the interplay of topography and glacial dynamics in High Asia, J. Geophys. Res.-Earth, 116, 1–21, 2011.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Searle, M. P., Noble, S. R., Hurford, A. J., and Rex, D. C.: Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya, Geol. Mag., 136, 513–525, https://doi.org/10.1017/S0016756899002885, 1999.
Seong, Y. B., Owen, L. A., Caffee, M. W., Kamp, U., Bishop, M. P., Bush, A., Copland, L., and Shroder, J. F.: Rates of basin-wide rockwall retreat in the K2 region of the Central Karakoram defined by terrestrial cosmogenic nuclide 10Be, Geomorphology, 107, 254–262, https://doi.org/10.1016/j.geomorph.2008.12.014, 2009.
Small, E. E., Anderson, R. S., Repka, J. L., and Finkel, R.: Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al, Earth Planet. Sc. Lett., 150, 413–425, https://doi.org/10.1016/S0012-821X(97)00092-7, 1997.
Small, R. J., Clark, M. J., and Cawse, T. J. P.: The Formation of Medial Moraines on Alpine Glaciers, J. Glaciol., 22, 43–52, https://doi.org/10.3189/S0022143000014040, 1979.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., DiGiulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J. M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, 2019.
Van Zelst, I., Crameri, F., Pusok, A., Glerum, A., Dannberg, J., and Thieulo, C.: 101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth, Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022, 2022.
Vernon, A. J., Van Der Beek, P. A., Sinclair, H. D., and Rahn, M. K.: Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database, Earth Planet. Sc. Lett., 270, 316–329, https://doi.org/10.1016/j.epsl.2008.03.053, 2008.
von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sc. Lett., 242, 224–239, 2006.
von Blanckenburg, F. and Willenbring, J. K.: Cosmogenic Nuclides: Dates and Rates of Earth-Surface Change, Elements, 10, 341–346, https://doi.org/10.2113/gselements.10.5.341, 2014.
von Blanckenburg, F., Hewawasam, T., and Kubik, P.: Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka, J. Geophys. Res.-Earth, 109, https://doi.org/10.1029/2003JF000049, 2004.
Wang, Y. and Willett, S. D.: Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations, Earth Surf. Dynam., 9, 1301–1322, https://doi.org/10.5194/esurf-9-1301-2021, 2021.
Ward, D. J. and Anderson, R. S.: The use of ablation-dominated medial moraines as samplers for 10Be-derived erosion rates of glacier valley walls, Kichatna Mountains, AK, Earth Surf. Proc. Land, 36, 495–512, https://doi.org/10.1002/esp.2068, 2011.
Wetterauer, K. and Scherler, D.: Spatial and temporal variations in rockwall erosion rates derived from cosmogenic 10Be in medial moraines at five valley glaciers around Pigne d'Arolla, Switzerland, Earth Surf. Dynam., 11, 1013–1033, https://doi.org/10.5194/esurf-11-1013-2023, 2023.
Wetterauer, K., Scherler, D., Anderson, L. S., and Wittmann, H.: Temporal evolution of headwall erosion rates derived from cosmogenic nuclide concentrations in the medial moraines of Glacier d'Otemma, Switzerland, Earth Surf. Proc. Land., 47, 2437–2454, https://doi.org/10.1002/esp.5386, 2022.
Wittmann, H., von Blanckenburg, F., Kruesmann, T., Norton, K., and Kubik, P.: Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland, J. Geophys. Res., 112, F04010, https://doi.org/10.1029/2006JF000729, 2007.
Short summary
This study explores how rocks on glacier surfaces originating from rockfalls help measure erosion rates using a chemical marker called 10Be. By analyzing data from 31 glaciers we found that erosion rates vary widely but can be accurately estimated and reveal links to rock exposure, glacier movement, and climate effects. Comparing 10Be erosion rates to other exhumation rates shows cases of balance, slower erosion, or faster erosion, offering insights into the complex drivers of rockwall erosion.
This study explores how rocks on glacier surfaces originating from rockfalls help measure...