Articles | Volume 71, issue 2
https://doi.org/10.5194/gh-71-147-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gh-71-147-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Avalanche fatalities in the European Alps: long-term trends and statistics
WSL Institute for Snow and Avalanche Research SLF, Davos,
Switzerland
Frédéric Jarry
Association Nationale pour l'Étude de la Neige et
des Avalanches, Grenoble, France
Georg Kronthaler
Lawinenwarndienst Bayern,
Munich, Germany
Susanna Mitterer
Österreichisches Kuratorium für
alpine Sicherheit, Innsbruck, Austria
Patrick Nairz
Lawinenwarndienst Tirol,
Innsbruck, Austria
Miha Pavšek
Anton Melik Geographical Institute, Research
Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
Mauro Valt
Associazione Interregionale Neve e Valanghe, Trento, Italy
Centro Valanghe di Arabba, Arabba, Italy
Gian Darms
WSL Institute for Snow and Avalanche Research SLF, Davos,
Switzerland
Related authors
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Frank Techel, Stephanie Mayer, Ross S. Purves, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-158, https://doi.org/10.5194/nhess-2024-158, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
We evaluate fully data- and model-driven predictions of avalanche danger in Switzerland and compare them with human-made avalanche forecasts as a benchmark. We show that model predictions perform similarly to human forecasts calling for a systematic integration of forecast chains into the forecasting process.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2374, https://doi.org/10.5194/egusphere-2024-2374, 2024
Short summary
Short summary
This study assesses the performance and explainability of a random forest classifier for predicting dry-snow avalanche danger levels during initial live-testing. The model achieved ∼70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Karsten Müller, Frank Techel, and Christoph Mitterer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-48, https://doi.org/10.5194/nhess-2024-48, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Avalanche forecasting is crucial for mountain safety. Tools like the European Avalanche Danger Scale and Matrix set standards for forecasters, but consistency still varies. We analyzed the use of the EAWS Matrix, aiding danger level assignment. Our analysis shows inconsistencies, suggesting further need for refinement and training.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Short summary
How is avalanche danger described in public avalanche forecasts? We analyzed 6000 textual descriptions of avalanche danger in Switzerland, taking the perspective of the forecaster. Avalanche danger was described rather consistently, although the results highlight the difficulty of communicating conditions that are neither rare nor frequent, neither small nor large. The study may help to refine the ways in which avalanche danger could be communicated to the public.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Frank Techel, Kurt Winkler, Matthias Walcher, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, https://doi.org/10.5194/nhess-20-1941-2020, https://doi.org/10.5194/nhess-20-1941-2020, 2020
Short summary
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Frank Techel, Christoph Mitterer, Elisabetta Ceaglio, Cécile Coléou, Samuel Morin, Francesca Rastelli, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 18, 2697–2716, https://doi.org/10.5194/nhess-18-2697-2018, https://doi.org/10.5194/nhess-18-2697-2018, 2018
Short summary
Short summary
In 1993, the European Avalanche Warning Services agreed upon a common danger scale to describe the regional avalanche hazard: the European Avalanche Danger Scale. Using published avalanche forecasts, we explored whether forecasters use the scale consistently. We noted differences in the use of the danger levels, some of which could be linked to the size of the regions a regional danger level is issued for. We recommend further harmonizing the avalanche forecast products in the Alps.
Alexandre Badoux, Norina Andres, Frank Techel, and Christoph Hegg
Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, https://doi.org/10.5194/nhess-16-2747-2016, 2016
Short summary
Short summary
A database of fatalities caused by natural hazards in Switzerland was compiled for the period from 1946 to 2015: in 70 years, 635 events occurred causing 1023 fatalities. The most common causes of death were snow avalanches (37 %), followed by lightning (16 %), floods (12 %), windstorms (10 %), rockfalls (8 %) and landslides (7 %). The annual number of victims showed a distinct decrease over time. In comparison to other countries, the natural hazard mortality rate in Switzerland is quite low.
F. Techel, B. Zweifel, and K. Winkler
Nat. Hazards Earth Syst. Sci., 15, 1985–1997, https://doi.org/10.5194/nhess-15-1985-2015, https://doi.org/10.5194/nhess-15-1985-2015, 2015
Short summary
Short summary
We present a spatiotemporal picture of winter backcountry usage in the Swiss Alps and compare this with the distribution of avalanche accidents.
Critical avalanche danger conditions and an unfavorable snowpack (old snow problem) strongly increase the risk of winter backcountry recreationists to be involved in a severe avalanche accident. This explains why there are comparably more accidents in the inneralpine regions with less activity.
F. Techel and C. Pielmeier
Nat. Hazards Earth Syst. Sci., 14, 779–787, https://doi.org/10.5194/nhess-14-779-2014, https://doi.org/10.5194/nhess-14-779-2014, 2014
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Frank Techel, Stephanie Mayer, Ross S. Purves, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-158, https://doi.org/10.5194/nhess-2024-158, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
We evaluate fully data- and model-driven predictions of avalanche danger in Switzerland and compare them with human-made avalanche forecasts as a benchmark. We show that model predictions perform similarly to human forecasts calling for a systematic integration of forecast chains into the forecasting process.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2374, https://doi.org/10.5194/egusphere-2024-2374, 2024
Short summary
Short summary
This study assesses the performance and explainability of a random forest classifier for predicting dry-snow avalanche danger levels during initial live-testing. The model achieved ∼70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Karsten Müller, Frank Techel, and Christoph Mitterer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-48, https://doi.org/10.5194/nhess-2024-48, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Avalanche forecasting is crucial for mountain safety. Tools like the European Avalanche Danger Scale and Matrix set standards for forecasters, but consistency still varies. We analyzed the use of the EAWS Matrix, aiding danger level assignment. Our analysis shows inconsistencies, suggesting further need for refinement and training.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Short summary
How is avalanche danger described in public avalanche forecasts? We analyzed 6000 textual descriptions of avalanche danger in Switzerland, taking the perspective of the forecaster. Avalanche danger was described rather consistently, although the results highlight the difficulty of communicating conditions that are neither rare nor frequent, neither small nor large. The study may help to refine the ways in which avalanche danger could be communicated to the public.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Matej Lipar, Andrea Martín-Pérez, Jure Tičar, Miha Pavšek, Matej Gabrovec, Mauro Hrvatin, Blaž Komac, Matija Zorn, Nadja Zupan Hajna, Jian-Xin Zhao, Russell N. Drysdale, and Mateja Ferk
The Cryosphere, 15, 17–30, https://doi.org/10.5194/tc-15-17-2021, https://doi.org/10.5194/tc-15-17-2021, 2021
Short summary
Short summary
The U–Th ages of subglacial carbonate deposits from a recently exposed surface previously occupied by the disappearing glacier in the SE European Alps suggest the glacier’s presence throughout the entire Holocene. These thin deposits, formed by regelation, would have been easily eroded if exposed during previous Holocene climatic optima. The age data indicate the glacier’s present unprecedented level of retreat and the potential of subglacial carbonates to act as palaeoclimate proxies.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Frank Techel, Kurt Winkler, Matthias Walcher, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, https://doi.org/10.5194/nhess-20-1941-2020, https://doi.org/10.5194/nhess-20-1941-2020, 2020
Short summary
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Frank Techel, Christoph Mitterer, Elisabetta Ceaglio, Cécile Coléou, Samuel Morin, Francesca Rastelli, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 18, 2697–2716, https://doi.org/10.5194/nhess-18-2697-2018, https://doi.org/10.5194/nhess-18-2697-2018, 2018
Short summary
Short summary
In 1993, the European Avalanche Warning Services agreed upon a common danger scale to describe the regional avalanche hazard: the European Avalanche Danger Scale. Using published avalanche forecasts, we explored whether forecasters use the scale consistently. We noted differences in the use of the danger levels, some of which could be linked to the size of the regions a regional danger level is issued for. We recommend further harmonizing the avalanche forecast products in the Alps.
Alexandre Badoux, Norina Andres, Frank Techel, and Christoph Hegg
Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, https://doi.org/10.5194/nhess-16-2747-2016, 2016
Short summary
Short summary
A database of fatalities caused by natural hazards in Switzerland was compiled for the period from 1946 to 2015: in 70 years, 635 events occurred causing 1023 fatalities. The most common causes of death were snow avalanches (37 %), followed by lightning (16 %), floods (12 %), windstorms (10 %), rockfalls (8 %) and landslides (7 %). The annual number of victims showed a distinct decrease over time. In comparison to other countries, the natural hazard mortality rate in Switzerland is quite low.
F. Techel, B. Zweifel, and K. Winkler
Nat. Hazards Earth Syst. Sci., 15, 1985–1997, https://doi.org/10.5194/nhess-15-1985-2015, https://doi.org/10.5194/nhess-15-1985-2015, 2015
Short summary
Short summary
We present a spatiotemporal picture of winter backcountry usage in the Swiss Alps and compare this with the distribution of avalanche accidents.
Critical avalanche danger conditions and an unfavorable snowpack (old snow problem) strongly increase the risk of winter backcountry recreationists to be involved in a severe avalanche accident. This explains why there are comparably more accidents in the inneralpine regions with less activity.
F. Techel and C. Pielmeier
Nat. Hazards Earth Syst. Sci., 14, 779–787, https://doi.org/10.5194/nhess-14-779-2014, https://doi.org/10.5194/nhess-14-779-2014, 2014
Related subject area
Physical Geography
Patrimoine géologique et géomorphologique : base pour le géotourisme et la création d'un géoparc UNESCO dans le Dahar (Sud-est tunisien)
Chancen, Herausforderungen und Risiken der Inwertsetzung des regionalen Geo-Erbes: Geotopschutz und Geotourismus im Spannungsfeld unterschiedlichster Interessen
The potential of fragipans in sustaining pearl millet during drought periods in north-central Namibia
The 1513 Monte Crenone rock avalanche: numerical model and geomorphological analysis
Evolution of fluvial environments and history of human settlements on the Ticino river alluvial plain
Schmidt hammer exposure-age dating of periglacial and glacial landforms in the Southern Swiss Alps based on R-value calibration using historical data
Assessing the ecological value of dynamic mountain geomorphosites
Assessing hillslope sediment generation potential by tree throw: a preliminary field study along a small river valley in the Jura Mountains, northwest Switzerland
Glacial lake outburst flood hazard assessment by satellite Earth observation in the Himalayas (Chomolhari area, Bhutan)
Reconstruction and actual trends of landslide activities in Bruust–Haltiwald, Horw, canton of Lucerne, Switzerland
Monitoring the crisis of a rock glacier with repeated UAV surveys
Regional-scale inventory of periglacial moving landforms connected to the torrential network system
Piecing together the Lateglacial advance phases of the Reussgletscher (central Swiss Alps)
A study of the Würm glaciation focused on the Valais region (Alps)
Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling
Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation
Introduction to the special issue of Geographica Helvetica: "Mapping, measuring and modeling in geomorphology"
Methods for detecting channel bed surface changes in a mountain torrent – experiences from the Dorfbach torrent
Risiko des Eintrags von Phosphor in den Hallwilersee durch Bodenerosion
The use of a raindrop aggregate destruction device to evaluate sediment and soil organic carbon transport
Investigation on protalus ramparts in the Swiss Alps
Improvements in 3-D digital mapping for geomorphological and Quaternary geological cartography
Ground temperature variations in a talus slope influenced by permafrost: a comparison of field observations and model simulations
The influence of terracettes on the surface hydrology of steep-sloping and subalpine environments: some preliminary findings
Experimentelle Erkundung von Wildbächen, Murgängen, Hangrutschungen und Steinschlag: Aktuelle Beispiele der WSL
Editorial Publishing physical geography papers in Geographica Helvetica
Implications of climate change on Glacier de la Plaine Morte, Switzerland
Auswirkungen der Klimaänderung auf die schweizerische Wasserkraftnutzung
Topoclimatological case-study of Alpine pastures near the Albula Pass in the eastern Swiss Alps
A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps
Emmanuel Reynard, Tarek Ben Fraj, Aziza Ghram Messedi, Hédi Ben Ouezdou, Mohamed Ouaja, and Yves Matthijs
Geogr. Helv., 77, 97–119, https://doi.org/10.5194/gh-77-97-2022, https://doi.org/10.5194/gh-77-97-2022, 2022
Short summary
Short summary
The study is a geomorphological analysis of Djebel Dahar, in south-eastern Tunisia, carried out as the basis for a UNESCO Global Geopark. We made a synthesis of the geographical, geological and geomorphological context of the area, proposed a delimitation for the future geopark, based on geological and geomorphological characteristics, and established a preliminary list of geosites, indicating their scientific value and their potential for geotourism.
Heidi Megerle, Simon Martin, and Géraldine Regolini
Geogr. Helv., 77, 53–66, https://doi.org/10.5194/gh-77-53-2022, https://doi.org/10.5194/gh-77-53-2022, 2022
Short summary
Short summary
In the field of regional geo-heritage promotion, this paper presents some opportunities, challenges and risks for geotope protection and geotourism.
Brice Prudat, Wolfgang Fister, Lena Bloemertz, Juliane Krenz, and Nikolaus J. Kuhn
Geogr. Helv., 77, 39–51, https://doi.org/10.5194/gh-77-39-2022, https://doi.org/10.5194/gh-77-39-2022, 2022
Short summary
Short summary
Soil quality depends on water availability for plants. Sandy soils with a poorly permeable layer (fragipan) are considered inept for agriculture. However they are cultivated in Namibia as they secure a minimum harvest during droughts. In order to understand the hydrological influence of fragipans in these soils, soil moisture content was measured. The results illustrate that the combination of sandy topsoil and shallow fragipan has beneficial effects on plant-available water during dry periods.
Alessandro De Pedrini, Christian Ambrosi, and Cristian Scapozza
Geogr. Helv., 77, 21–37, https://doi.org/10.5194/gh-77-21-2022, https://doi.org/10.5194/gh-77-21-2022, 2022
Short summary
Short summary
The Monte Crenone rock avalanche of 1513 is well known on the southern side of the Alps because in 1515 it generated the largest inundation that has occurred in Switzerland in the Common Era, the Buzza di Biasca. New geological and historical observations allowed the setup of a numerical model of this major event, permitting a better definition of the chain of consequences that affected the alluvial plain of the river Ticino from Biasca to Lake Maggiore between the 16th and the 19th century.
Dorota Czerski, Daphné Giacomazzi, and Cristian Scapozza
Geogr. Helv., 77, 1–20, https://doi.org/10.5194/gh-77-1-2022, https://doi.org/10.5194/gh-77-1-2022, 2022
Short summary
Short summary
The paper presents the results of recent geoarchaeological studies on the Ticino river alluvial plain. The sedimentological descriptions are combined with archaeological observations and constrained with radiocarbon dating. This approach, together with data from previous research and historical sources, provides an interesting overview of the eveolution of Ticino river morphosedimentary dynamics in relation to human settlements since the Neolithic.
Cristian Scapozza, Chantal Del Siro, Christophe Lambiel, and Christian Ambrosi
Geogr. Helv., 76, 401–423, https://doi.org/10.5194/gh-76-401-2021, https://doi.org/10.5194/gh-76-401-2021, 2021
Short summary
Short summary
Exposure ages make it possible to determine the time of weathering of a rock surface. They can be determined from rebound values measured with the Schmidt hammer and calibrated on surfaces of known age, defined in this study thanks to historical cartography and two mule tracks built in 300 and 1250 CE, which allowed us to reconstruct glacier fluctuations over the last 3 centuries in Val Scaradra and to define the time of deglaciation and rock glacier development in the Splügenpass region.
Jonathan Bussard and Elisa Giaccone
Geogr. Helv., 76, 385–399, https://doi.org/10.5194/gh-76-385-2021, https://doi.org/10.5194/gh-76-385-2021, 2021
Short summary
Short summary
In mountain environments, active geomorphological processes have a strong influence on plant diversity because they act as renovators for habitats of pioneer species. In this paper, we propose criteria to assess the ecological value of dynamic mountain geomorphosites. We show that the interest of plant communities and the influence of geomorphological processes on plant communities are fundamental criteria for assessing ecological value in an exhaustive and objective way.
Philip Greenwood, Jan Bauer, and Nikolaus J. Kuhn
Geogr. Helv., 76, 319–333, https://doi.org/10.5194/gh-76-319-2021, https://doi.org/10.5194/gh-76-319-2021, 2021
Short summary
Short summary
Soil erosion by wind and water is a commonly recognized phenomenon on agricultural land. Erosion in forests is studied less and generally considered to be limited because of the soil protection by vegetation. However, trees, when toppled because of old age or wind, loosen a considerable amount of soil when their roots are pulled from the ground. In addition, the holes left in the ground act as collectors for water and concentrated runoff, causing significant soil loss on forested slopes.
Cristian Scapozza, Christian Ambrosi, Massimiliano Cannata, and Tazio Strozzi
Geogr. Helv., 74, 125–139, https://doi.org/10.5194/gh-74-125-2019, https://doi.org/10.5194/gh-74-125-2019, 2019
Short summary
Short summary
A glacial lake outburst flood hazard assessment by satellite Earth observation and numerical modelling was done for the lakes linked to the Thangothang Chhu glacier, Chomolhari area (Bhutan), combining detailed geomorphological mapping, landslide and rock glacier inventories, as well as surface displacements quantified by satellite InSAR. Outburst scenario modelling revealed that only a flood wave can have an impact on the two human settlements located downslope of the glacier.
Philippe Burkhalter, Markus Egli, and Holger Gärtner
Geogr. Helv., 74, 93–103, https://doi.org/10.5194/gh-74-93-2019, https://doi.org/10.5194/gh-74-93-2019, 2019
Short summary
Short summary
A spatiotemporal reconstruction of slope movements on the edge of Lake Lucerne near the municipality of Horw, canton of Lucerne is presented. The reconstruction was realized by analyzing growth reactions of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) trees growing on this slope. Results show that the area has been moving at least since 1948. A significant concentration of events was observed between 1990 and 2000 as well as after 2006.
Sebastián Vivero and Christophe Lambiel
Geogr. Helv., 74, 59–69, https://doi.org/10.5194/gh-74-59-2019, https://doi.org/10.5194/gh-74-59-2019, 2019
Mario Kummert and Reynald Delaloye
Geogr. Helv., 73, 357–371, https://doi.org/10.5194/gh-73-357-2018, https://doi.org/10.5194/gh-73-357-2018, 2018
Max Boxleitner, Susan Ivy-Ochs, Dagmar Brandova, Marcus Christl, Markus Egli, and Max Maisch
Geogr. Helv., 73, 241–252, https://doi.org/10.5194/gh-73-241-2018, https://doi.org/10.5194/gh-73-241-2018, 2018
Patrick Becker, Martin Funk, Christian Schlüchter, and Kolumban Hutter
Geogr. Helv., 72, 421–442, https://doi.org/10.5194/gh-72-421-2017, https://doi.org/10.5194/gh-72-421-2017, 2017
Short summary
Short summary
This article studies the ice flow in the Valais region during the last glaciation (Würm) in detail. The numerical modelling shows a discrepancy of the height of the ice cap compared to the geomorphological evidence based on trimlines. However, geomorphological evidence at the Simplon Pass indicating an ice flow from the Rhone valley into the valley of Toce was confirmed. Furthermore it is shown that for this confirmation a sufficient ice thickness is obligatory.
Patrick Becker, Julien Seguinot, Guillaume Jouvet, and Martin Funk
Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, https://doi.org/10.5194/gh-71-173-2016, 2016
Rachel Luethi and Marcia Phillips
Geogr. Helv., 71, 121–131, https://doi.org/10.5194/gh-71-121-2016, https://doi.org/10.5194/gh-71-121-2016, 2016
Short summary
Short summary
Long-term borehole temperature monitoring in mountain permafrost environments is challenging under the hostile conditions reigning there. On the basis of data measured in the SLF borehole network we show situations where ground temperature data should be interpreted with caution. A selection of recently observed problems are discussed, and advantages and possible drawbacks of various solutions including data correction, measurement redundancy or alternate instrumentation are presented.
P. Greenwood, M. Hoelzle, and N. J. Kuhn
Geogr. Helv., 70, 311–313, https://doi.org/10.5194/gh-70-311-2015, https://doi.org/10.5194/gh-70-311-2015, 2015
Short summary
Short summary
Editorial introducing the special issue of Geographica Helvetica: Mapping, Measuring and Modeling in Geomorphology.
C. Willi, C. Graf, Y. Deubelbeiss, and M. Keiler
Geogr. Helv., 70, 265–279, https://doi.org/10.5194/gh-70-265-2015, https://doi.org/10.5194/gh-70-265-2015, 2015
Short summary
Short summary
The erosion of and depositions on channel bed surfaces are instrumental to understanding debris flow processes. We present different methods and highlight their pro and cons. Terrestrial and airborne laser scanning, erosion sensors, cross sections and geomorphological mapping are compared. Two of these approaches are tested and applied in a torrent. The results indicate that the methods are associated with variable temporal and spatial resolution as well as data quality and invested effort.
S. Müller and D. Schaub
Geogr. Helv., 70, 193–198, https://doi.org/10.5194/gh-70-193-2015, https://doi.org/10.5194/gh-70-193-2015, 2015
L. Xiao, Y. Hu, P. Greenwood, and N. J. Kuhn
Geogr. Helv., 70, 167–174, https://doi.org/10.5194/gh-70-167-2015, https://doi.org/10.5194/gh-70-167-2015, 2015
C. Scapozza
Geogr. Helv., 70, 135–139, https://doi.org/10.5194/gh-70-135-2015, https://doi.org/10.5194/gh-70-135-2015, 2015
Short summary
Short summary
In the scientific literature, “protalus ramparts” can designate both a nivo-gravitational landform (also called “pronival ramparts”) and a permafrost-related landform. Thanks to a selection of eight major diagnostic criteria defined from observations carried out in the Swiss Alps, it was highlighted that the structure, ice content and creep dynamics of protalus ramparts are the same as many rock glaciers. Protalus rampart were therefore defined simply as a (small) active talus rock glacier.
C. Ambrosi and C. Scapozza
Geogr. Helv., 70, 121–133, https://doi.org/10.5194/gh-70-121-2015, https://doi.org/10.5194/gh-70-121-2015, 2015
Short summary
Short summary
Some examples of 3-D digital mapping for Quaternary geological and geomorphological cartography are presented in this paper. Examples concern in particular the Quaternary geological cartography around the well-know Flims rockslide area (Graubünden), performed in the framework of the GeoCover project launched by the Swiss Geological Survey, and the landslide and glacial/periglacial landform mapping and inventorying in the southern Swiss Alps (Ticino) for assessing the slope tectonic activity.
B. Staub, A. Marmy, C. Hauck, C. Hilbich, and R. Delaloye
Geogr. Helv., 70, 45–62, https://doi.org/10.5194/gh-70-45-2015, https://doi.org/10.5194/gh-70-45-2015, 2015
P. Greenwood, S. Kuonen, W. Fister, and N. J. Kuhn
Geogr. Helv., 70, 63–73, https://doi.org/10.5194/gh-70-63-2015, https://doi.org/10.5194/gh-70-63-2015, 2015
Short summary
Short summary
Alpine and mountain slopes represent important pathways that link high-altitude grazing areas to meadows and rangelands at lower elevations. Given the acute gradients associated with such environments, we hypothesize that terracettes act as efficient runoff conveyance routes that facilitate the movement of runoff and associated material during erosion events. This hypothesis was partially disproved during a series of rainfall/runoff simulations on a well-developed terracette system, however.
M. Stähli, C. Graf, C. Scheidl, C. R. Wyss, and A. Volkwein
Geogr. Helv., 70, 1–9, https://doi.org/10.5194/gh-70-1-2015, https://doi.org/10.5194/gh-70-1-2015, 2015
M. Hoelzle and E. Reynard
Geogr. Helv., 68, 225–226, https://doi.org/10.5194/gh-68-225-2013, https://doi.org/10.5194/gh-68-225-2013, 2013
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
R. Weingartner, B. Schädler, and P. Hänggi
Geogr. Helv., 68, 239–248, https://doi.org/10.5194/gh-68-239-2013, https://doi.org/10.5194/gh-68-239-2013, 2013
P. Michna, W. Eugster, R. V. Hiller, M. J. Zeeman, and H. Wanner
Geogr. Helv., 68, 249–263, https://doi.org/10.5194/gh-68-249-2013, https://doi.org/10.5194/gh-68-249-2013, 2013
S. Schneider, S. Daengeli, C. Hauck, and M. Hoelzle
Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, https://doi.org/10.5194/gh-68-265-2013, 2013
Cited articles
Alpine Convention: The Alps: eight countries, a single territory, available at: www.alpconv.org (last access: 21 May 2016), 2009.
Ancey, C., Gardelle, F., and Gardelle, C.: L'homme face à la neige et aux avalanches dans les temps passés, in: Guide neige et avalanche, Connaissances, pratiques, sécurité, 21–34, Edisud. Ouvrage collectif sous le patronage de l'ANENA, 2nd edn., 1998.
Ancey, C., Rapin, F., Martin, E., Coléou, C., Naaim, M., and Brunot, G.: L'avalanche de Péclerey du 9 février 1999, La Houille Blanche, 5, 45–53, 2000.
Atkins, D.: Time to change rescue attitudes for a new generation, in: Proceedings International Snow Science Workshop 2008, Whistler, Canada, 80–86, 2008.
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural Hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., in preparation, 2016.
Bätzing, W.: Der Stellenwert des Tourismus in den Alpen und seine Bedeutung für eine nachhaltige Entwicklung des Alpenraumes, Der Alpentourismus. Entwicklungspotenziale im Spannungsfeld von Kultur, Ökonomie und Ökologie, 175–196, 2002.
BKA: Gesetz vom 10. Oktober 1991 über die Lawinenkommissionen in den Gemeinden, available at: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrT&Gesetzesnummer=20000172, Bundeskanzleramt, Rechtsinformationssystem, (last access: February 2016), 1991.
Boslaugh, S. and Watters, P.: Statistics in a nutshell. A desktop quick reference, O'Reilly Media, Inc., Sebastopol, 1st edn., 480 pp., 2008.
Brugger, H., Durrer, B., Adler-Kastner, L., Falk, M., and Tschirky, F.: Field management of avalanche victims, Resuscitation, 51, 7–15, https://doi.org/10.1016/S0300-9572(01)00383-5, 2001.
Brugger, H., Etter, H., Zweifel, B., Mair, P., Hohlrieder, M., Ellerton, J., Elsensohn, F., Boyd, J., Sumann, G., and Falk, M.: The impact of avalanche rescue devices on survival, Resuscitation, 75, 476–483, https://doi.org/10.1016/j.resuscitation.2007.06.002, 2007.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Bundesamt für Statistik: Verkehrsunfälle und Umweltauswirkungen (traffic accidents and environmental impact statistics), available at: http://www.bfs.admin.ch/bfs/portal/de/index/themen/11/06/blank/01/aktuel.html (last access: March 2016), 2016.
Chabot, D.: Promoting avalanche awareness in the snowmobile capital of the world, The Avalanche Review, 29, 14, 2011.
Edgerly, B.: Under the radar: exploiting new school media to capture unreported avalanche incidents, in: Proceedings International Snow Science Workshop 2010, Squaw Valley, CA, 304–309, 2010.
Etter, H., Meister, R., and Atkins, D.: ICAR and its importance in avalanche rescue, in: Proceedings International Snow Science Workshop 2004, Jackson Hole, WY, 360–369, 2004.
Etter, H., Stucki, T., Zweifel, B., and Pielmeier, C.: Developments in avalanche forecasting and other prevention measures and their potential effects on avalanche fatalities, in: Proceedings International Snow Science Workshop 2008, Whistler, Canada, 628–635, 2008.
Fridstrom, L., Ifver, J., Ingebritsen, S., Kulmala, R., and Thomsen, L.: Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts, Accid. Anal. and Prev., 27, 1–20, https://doi.org/10.1016/0001-4575(94)e0023-e, 1995.
Fuchs, S., Bründl, M., and Stötter, J.: Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland, Nat. Hazards Earth Syst. Sci., 4, 263–275, https://doi.org/10.5194/nhess-4-263-2004, 2004.
Goetz, D.: Les avalanches mortelles dans les Vosges, le Jura et le Massif central, Neige et Avalanches, 133, 12–17, 2011.
Good, W.: Optimaler Einsatz der Mittel zur Ortung Lawinenverschütteter, in: Schnee und Lawinen in den Schweizer Alpen. Winter 1970/71, 154–161, Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch Davos, 1972.
Grosjean, P. and Ibanez, F.: pastecs: package for analysis of space-time ecological series, r package version 1.3-18, 2014.
Haegeli, P., Falk, M., Procter, E., Zweifel, B., Jarry, F., Logan, S., Kronholm, K., Biskupič, M., and Brugger, H.: The effectiveness of avalanche airbags, Resuscitation, 85, 1197–1203, https://doi.org/10.1016/j.resuscitation.2014.05.025, 2014.
Harvey, S.: Avalanche incidents in Switzerland in relation to the predicted danger degree, in: Proceedings International Snow Science Workshop 2002, Penticton, Canada, 2002.
Harvey, S. and Zweifel, B.: New trends of recreational avalanche accidents in Switzerland, in: Proceedings International Snow Science Workshop 2008, Whistler, Canada, 9–15, 2008.
Harvey, S., Rhyner, H., and Schweizer, J.: Lawinenkunde, Bruckmann Verlag GmbH, München, 2012.
Hohlrieder, M., Thaler, S., Würtl, W., Völckel, W., Ulmer, H., Brugger, H., and Mair, P.: Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience, High Alt Med Biol, 9, 229–233, https://doi.org/10.1089/ham.2007.1061, 2008.
Höller, P.: Avalanche hazards and mitigation in Austria: a review, Nat Hazards, 43, 81–101, https://doi.org/10.1007/s11069-007-9109-2, 2007.
Höller, P.: Lawinen – die grössten Katastrophen in Österreich seit 1946/47, Studia Universitätsverlag Innsbruck, 95 pp., 2015.
International Commission for Alpine Rescue ICAR-CISA, available at: http://www.alpine-rescue.org, last access: June 2016.
ICAR-CISA: 50 Jahre Internationale Bergrettung 1948–1998, available at: http://www.alpine-rescue.org (last access: May 2016), 1998.
ICAR-CISA: ICAR Avalanche Statistic 1983–2015. 20160115-AVA Avalanche deaths by activity, official statistic, not openly accessible, 2016.
ILO: Improvement of national reporting, data collection and analysis of occupational accidents and diseases, International Labour Office, Geneva, 2012.
Jamieson, B. and Jones, A.: The effect of under-reporting of non-fatal involvements in snow avalanches on vulnerability, in: Proceedings 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, Canada, 2015.
Jamieson, B., Haegeli, P., and Gauthier, D.: Avalanche accidents in Canada, Volume 5, 1996–2007, Canadian Avalanche Association, 429 pp., 2010.
Jarry, F.: 40 ans d'accidents d'avalanche … 40 ans de prévention, Neige et Avalanches, 135, 18–22, 2011.
Kirchsteiger, C.: Trends in accidents, disasters and risk sources in Europe, J. Loss. Prevent. Proc., 12, 7–17, https://doi.org/10.1016/s0950-4230(98)00033-3, 1999.
Kühnel, F.: Wenn Schnee zum Risiko wird, Badische Zeitung, 2016-02-13, list of avalanche fatalities in the Schwarzwald region since 1729, collected by Frank Kühnel, 2016.
Laternser, M. and Pfister, C.: Avalanches in Switzerland 1500-1990, in: Rapid mass movement as a source of climatic evidence for the Holocene, Palaeoclimate Research, 19, 241–266, 1997.
Luzian, R.: Lawinenereignisse und Witterungsablauf in Österreich. Winter 1987/88, 1988/89, 1989/90, 1990/91, Österreichischer Agrarverlag, Wien: 188 Seiten (FBVA-Berichte, Nr. 68), 1992.
Luzian, R.: Lawinenschäden in Österreich in der Periode von 1967/68 bis 1992/93, in: Proceedings Interpraevent 2000, Villach, Austria, 437–450, 2000.
Mair, P., Frimmel, C., Vergeiner, G., Hohlrieder, M., Moroder, L., Hösl, P., and Völckel, W.: Emergency medical helicopter operations for avalanche accidents, Resuscitation, 84, 492–495, https://doi.org/10.1016/j.resuscitation.2012.09.010, 2013.
Mann, H.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Margreth, S.: Die Wirkung des Waldes bei Lawinen, Forum für Wissen, 21–26, 2004.
Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res. Lett., 35, 163–167, https://doi.org/10.1029/2008gl033998, 2008.
McCammon, I. and Hägeli, P.: An evaluation of rule-based decision tools for travel in avalanche terrain, Cold Reg. Sci. Technol., 47, 193–206, https://doi.org/10.1016/j.coldregions.2006.08.007, 2007.
McLeod, A.: Kendall: Kendall rank correlation and Mann-Kendall trend test, http://CRAN.R-project.org/package=Kendall, r package version 2.2, 2011.
Meister, R.: Lawinenniedergänge mit Todesopfern in der Schweiz, in: Schnee und Lawinen in den Schweizer Alpen. Winter 1985/86, 195–206, Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch Davos, 1987.
Meister, R.: Country-wide avalanche warning in Switzerland, in: Proceedings International Snow Science Workshop 1994, Snowbird, UT, 58–71, 1994.
Meister, R.: Avalanches: warning, rescue, prevention, in: ICAR conference Makarska, Croatia 2001, p. 8, 2001.
Munter, W.: 3x × 3 Lawinen, Agentur Pohl und Schellhammer, Garmisch-Partenkirchen, 1st edn., 1997.
Österreichischer Alpenverein: Jahresbericht 2012, available at: http://www.alpenverein.at/portal_wAssets/docs/der-verein/JB_2012_ebook.pdf (last access: March 2016), 2012.
Page, C., Atkins, D., Shockley, L., and Yaron, M.: Avalanche deaths in the United States: a 45-year analysis, Wilderness Environ Med., 10, 146–151, 1999.
Pavšek, M.: Les avalanches dans les Alpes slovènes, La leçon à tirer des précédents historiques, in: Histoire et mémoire des risques naturels, 149–164, Grenoble: Maison des Sciences de l'Homme-Alpes, 2000.
Pavšek, M.: Snešni plazovi v Sloveniji (Avalanches in Slovenia), Geografija Slovenije 6, Ljubljana, 209 pp., 2002.
Pfeifer, C., Zeileis, A., and Höller, P.: Trend and regional analysis of fatal off-piste and backcountry avalanche accidents in Austria within the years 1968 and 2011, in: Proceedings International workshop on statistical modelling 2013, Palermo, Italy, 743–748, 2013.
Procter, E., Strapazzon, G., Dal Cappello, T., Castlunger, L., Staffler, H., and Brugger, H.: Adherence of backcountry winter recreationists to avalanche prevention and safety practices in northern Italy, Scand. J. Med. Sci. Sports, 24, https://doi.org/10.1111/sms.12094, 2013.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: March 2016), 2016.
Roch, A.: Neve e valanghe, Milano: Club Alpino Italiano, 1980.
Schaffhauser, H.: Lawinenereignisse und Witterungsablauf in Österreich. Winter 1986/87, Österreichischer Agrarverlag, Wien: 138 Seiten (FBVA-Berichte, Nr. 35), 1988.
Schweizer, J. and Lütschg, M.: Characteristics of human-triggered avalanches, Cold Reg. Sci. Technol., 33, 147–162, https://doi.org/10.1016/s0165-232x(01)00037-4, 2001.
Sivardiére, F.: Le secours en avalanche, in: Guide neige et avalanche. Connaissances, pratiques, sécurité, 277–295, Edisud. Ouvrage collectif sous le patronage de l'ANENA. 2nd edn., 1998.
SLF: Schnee und Lawinen in den Schweizer Alpen, Jahrgänge (Winter 1950/51 bis Winter 1979/80), Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch Davos, 1950–1980.
SLF: Schnee und Lawinen in den Schweizer Alpen. Winter 1950/51, Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch Davos: 231 pages (Nr. 15), 1952.
Stethem, C., Jamieson, B., Schaerer, P., Liverman, D., Germain, D., and Walker, S.: Snow avalanche hazard in Canada – a review, Nat Hazards, 28, 487–515, https://doi.org/10.1023/A:1022998512227, 2003.
Techel, F.: Die Überlebenschancen sind gestiegen, Bergretter, 32, 10, 2015.
Techel, F. and Zweifel, B.: Recreational avalanche accidents in Switzerland: trends and patterns with an emphasis on burial, rescue methods and avalanche danger, in: Proceedings International Snow Science Workshop 2013, Grenoble, France, 1106–1112, 2013.
Techel, F., Zweifel, B., and Marty, C.: Schnee und Lawinen in den Schweizer Alpen. Hydrologisches Jahr 2014/15, WSL Institut für Schnee- und Lawinenforschung SLF Davos: 83 pages (WSL Ber. 37), 2015a.
Techel, F., Zweifel, B., and Winkler, K.: Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland, Nat. Hazards Earth Syst. Sci., 15, 1985–1997, https://doi.org/10.5194/nhess-15-1985-2015, 2015.b.
Tschirky, F., Brabec, B., and Kern, M.: Avalanche rescue systems in Switzerland: experience and limitations, in: Proceedings International Snow Science Workshop 2000, Big Sky, MT, 369–376, 2000.
Valla, F.: The french experience in avalanche education for skiers, in: Proceedings International Snow Science Workshop 1984, Aspen, CO, 70–77, 1984.
Valla, F.: Les accidents d'avalanches dans les Alpes 1975-1989, Revue de géographique alpine, 78, 145–155, 1990.
Valt, M.: Incidenti da valanga sulle Alpi 1985–2009, Neve e Valanghe, 68, 14–23, 2009.
Valt, M. and Pivot, S.: Avalanche accident documentation is of fundamental importance to understand the dynamics, taking place in snow, of risky activities in order to implement the best possible prevention strategies, in: Proceedings International Snow Science Workshop 2013, Grenoble, France, 1142–1147, 2013.
Venables, W. and Ripley, B.: Modern Applied Statistics with S, Springer-Verlag, https://doi.org/10.1007/978-0-387-21706-2, 2002.
Winkler, K.: Entwicklung des Lawinenrisikos bei Aktivitäten im freien Gelände, in: Lawinen und Recht. Tagungsband zum Internationalen Seminar vom 1.–3. Juni 2015, Davos, Switzerland, 109–112, WSL Ber 34, 2015.
WSL: Lawinenwinter 1999. Ereignisanalyse (Avalanche winter 1999. Event analysis.), WSL Institute for Snow and Avalanche Research SLF, 588 pp., 2000.
Short summary
During the last 45 years, about 100 people lost their lives in avalanches in the European Alps each year. Avalanche fatalities in settlements and on transportation corridors have considerably decreased since the 1970s. In contrast, the number of avalanche fatalities during recreational activities away from avalanche-secured terrain doubled between the 1960s and 1980s and has remained relatively stable since, despite a continuing strong increase in winter backcountry recreational activities.
During the last 45 years, about 100 people lost their lives in avalanches in the European Alps...