Articles | Volume 73, issue 1
https://doi.org/10.5194/gh-73-1-2018
https://doi.org/10.5194/gh-73-1-2018
Standard article
 | 
08 Jan 2018
Standard article |  | 08 Jan 2018

The bedrock topography of Gries- and Findelengletscher

Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti

Related authors

Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024,https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
4D imaging of a near-terminus glacier collapse feature through high-density GPR acquisitions
Bastien Ruols, Johanna Klahold, Daniel Farinotti, and James Irving
EGUsphere, https://doi.org/10.5194/egusphere-2024-3074,https://doi.org/10.5194/egusphere-2024-3074, 2024
Short summary
Subglacial and subaerial fluvial sediment transport capacity respond differently to water discharge variations
Ian Delaney, Andrew Tedstone, Mauro A. Werder, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2580,https://doi.org/10.5194/egusphere-2024-2580, 2024
Short summary
A minimal machine learning glacier mass balance model
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378,https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Annual mass changes for each glacier in the world from 1976 to 2023
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323,https://doi.org/10.5194/essd-2024-323, 2024
Preprint under review for ESSD
Short summary

Related subject area

Others (Geographical Information Science, Remote Sensing, Cartography)
Die another day: explanations based on qualitative comparative analysis (QCA) for the survival and non-survival of isolated ski lifts in Switzerland
Steve Schlegel and Christoph Schuck
Geogr. Helv., 79, 85–99, https://doi.org/10.5194/gh-79-85-2024,https://doi.org/10.5194/gh-79-85-2024, 2024
Short summary
The State as a “form of life” and the space as Leistungsraum: the reception of Ratzel in the First and Second World Wars
Patricia Chiantera-Stutte
Geogr. Helv., 78, 29–39, https://doi.org/10.5194/gh-78-29-2023,https://doi.org/10.5194/gh-78-29-2023, 2023
Short summary
People's knowledge and perceptions of Trachycarpus fortunei (Chinese windmill palm) invasions and their management in Ticino, Switzerland
Micol Genazzi, Antoine Guisan, and Ross T. Shackleton
Geogr. Helv., 77, 443–453, https://doi.org/10.5194/gh-77-443-2022,https://doi.org/10.5194/gh-77-443-2022, 2022
Short summary
What can we see from the road? Applications of a cumulative viewshed analysis on a US state highway network
Sterling D. Quinn
Geogr. Helv., 77, 165–178, https://doi.org/10.5194/gh-77-165-2022,https://doi.org/10.5194/gh-77-165-2022, 2022
Short summary
Geological monitoring networks for risk management close to large rock cliffs: the case history of Gallivaggio and Cataeggio in the italian Alps
Luca Dei Cas, Maria Luisa Pastore, Andrea Pavan, and Nicola Petrella
Geogr. Helv., 76, 85–101, https://doi.org/10.5194/gh-76-85-2021,https://doi.org/10.5194/gh-76-85-2021, 2021
Short summary

Cited articles

Bauder, A., Funk, M., and Gudmundsson, G. H.: The ice thickness distribution of Unteraargletscher (Switzerland), Ann. Glaciol., 37, 331–336, https://doi.org/10.3189/172756403781815852, 2003. a
Briggs, I. C.: Machine contouring using minimum curvature, Geophysics, 39, 39–48, https://doi.org/10.1190/1.1440410, 1974. a, b, c
Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian inference of subglacial topography using mass conservation, Front. Earth Sci., 4, 1–15, https://doi.org/10.3389/feart.2016.00008, 2016. a
Daniels, D.: Ground penetrating radar (2nd ecition), The Institution of Engineering and Technology, London, 2007. a
Farinotti, D., Huss, M., Bauder, A., Funk, M., and Truffer, M.: A method to estimate ice volume and ice thickness distribution of alpine glaciers, J. Glaciol., 55, 422–430, https://doi.org/10.3189/002214309788816759, 2009. a, b, c, d, e
Download
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.