Articles | Volume 76, issue 4
https://doi.org/10.5194/gh-76-401-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gh-76-401-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Schmidt hammer exposure-age dating of periglacial and glacial landforms in the Southern Swiss Alps based on R-value calibration using historical data
Cristian Scapozza
CORRESPONDING AUTHOR
Institute of Earth Sciences (IST), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6952 Canobbio, Switzerland
Chantal Del Siro
Institute of Earth Surface Dynamics (IDYST), University of Lausanne, UNIL Mouline, 1015 Lausanne, Switzerland
Christophe Lambiel
Institute of Earth Surface Dynamics (IDYST), University of Lausanne, UNIL Mouline, 1015 Lausanne, Switzerland
Christian Ambrosi
Institute of Earth Sciences (IST), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6952 Canobbio, Switzerland
Related authors
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Alessandro De Pedrini, Christian Ambrosi, and Cristian Scapozza
Geogr. Helv., 77, 21–37, https://doi.org/10.5194/gh-77-21-2022, https://doi.org/10.5194/gh-77-21-2022, 2022
Short summary
Short summary
The Monte Crenone rock avalanche of 1513 is well known on the southern side of the Alps because in 1515 it generated the largest inundation that has occurred in Switzerland in the Common Era, the Buzza di Biasca. New geological and historical observations allowed the setup of a numerical model of this major event, permitting a better definition of the chain of consequences that affected the alluvial plain of the river Ticino from Biasca to Lake Maggiore between the 16th and the 19th century.
Dorota Czerski, Daphné Giacomazzi, and Cristian Scapozza
Geogr. Helv., 77, 1–20, https://doi.org/10.5194/gh-77-1-2022, https://doi.org/10.5194/gh-77-1-2022, 2022
Short summary
Short summary
The paper presents the results of recent geoarchaeological studies on the Ticino river alluvial plain. The sedimentological descriptions are combined with archaeological observations and constrained with radiocarbon dating. This approach, together with data from previous research and historical sources, provides an interesting overview of the eveolution of Ticino river morphosedimentary dynamics in relation to human settlements since the Neolithic.
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Cécile Pellet, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data, 17, 4125–4157, https://doi.org/10.5194/essd-17-4125-2025, https://doi.org/10.5194/essd-17-4125-2025, 2025
Short summary
Short summary
Rock glaciers are landforms generated by the creep of frozen ground (permafrost) in cold-climate mountains. Mapping rock glaciers contributes to documenting the distribution and the dynamics of mountain permafrost. We compiled inventories documenting the location, the characteristics, and the extent of rock glaciers in 12 mountain regions around the world. In each region, a team of operators performed the work following common rules and agreed on final solutions when discrepancies were identified.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
The Cryosphere, 18, 5939–5963, https://doi.org/10.5194/tc-18-5939-2024, https://doi.org/10.5194/tc-18-5939-2024, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Alessandro De Pedrini, Christian Ambrosi, and Cristian Scapozza
Geogr. Helv., 77, 21–37, https://doi.org/10.5194/gh-77-21-2022, https://doi.org/10.5194/gh-77-21-2022, 2022
Short summary
Short summary
The Monte Crenone rock avalanche of 1513 is well known on the southern side of the Alps because in 1515 it generated the largest inundation that has occurred in Switzerland in the Common Era, the Buzza di Biasca. New geological and historical observations allowed the setup of a numerical model of this major event, permitting a better definition of the chain of consequences that affected the alluvial plain of the river Ticino from Biasca to Lake Maggiore between the 16th and the 19th century.
Dorota Czerski, Daphné Giacomazzi, and Cristian Scapozza
Geogr. Helv., 77, 1–20, https://doi.org/10.5194/gh-77-1-2022, https://doi.org/10.5194/gh-77-1-2022, 2022
Short summary
Short summary
The paper presents the results of recent geoarchaeological studies on the Ticino river alluvial plain. The sedimentological descriptions are combined with archaeological observations and constrained with radiocarbon dating. This approach, together with data from previous research and historical sources, provides an interesting overview of the eveolution of Ticino river morphosedimentary dynamics in relation to human settlements since the Neolithic.
Sebastián Vivero, Reynald Delaloye, and Christophe Lambiel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-8, https://doi.org/10.5194/esurf-2021-8, 2021
Preprint withdrawn
Short summary
Short summary
We use repeated drone flights to measure the velocities of a rock glacier located in the western Swiss Alps. The results are validated by comparing with simultaneous GPS measurements. Between 2016 and 2019, the rock glacier doubled its overall frontal velocity, from 5 m to more than 10 m per year. These high velocities and the development of a scarp feature indicate a rock glacier destabilisation phase. Finally, this work highlights the use of drones for rock glacier monitoring.
Cited articles
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., and Taylor K. C.:
Holocene climatic instability: a prominent, widespread event 8200 yr ago,
Geology, 25, 483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2, 1997.
Brönnimann, S.: Temps et climat en Suisse dans les années 1810, Ann.
Valais., 2019, 49–60, 2019.
Burga, C., Perret, R., and Zoller, H.: Swiss localities of early recognized
Holocene climate oscillations – characterisation and significance, Vier.
Natur. Gesell. Zürich, 146, 65–74, 2001.
Carlevaro, E.: Dinamiche del popolamento nell'area sudalpina dal Bronzo
finale alla romanizzazione, Università di Zurigo, Zurigo, Svizzera, 343 pp., available at: https://zora.uzh.ch/id/eprint/164250/ (last access: 9 November 2021), 2013.
Cavargna-Sani, M., Epard, J.-L., Bussy, F., and Ulianov, A.: Basement
lithostratigraphy of the Adula nappe: implications for Palaeozoic evolution
and Alpine kinematics, Int. J. Earth Sci., 103, 61–82,
https://doi.org/10.1007/s00531-013-0941-1, 2014.
Del Siro, C.: Les fluctuations des glaciers après le Petit Âge Glaciaire, Datation de cordons morainiques dans le Val Scaradra avec la
méthode du marteau de Schmidt et l'analyse de cartes historiques, Université de Lausanne, Lausanne, Suisse, 41 pp., 2019.
Dramis, F., Giraudi, C., and Guglielmin, M.: Rock glacier distribution and
paleoclimate in Italy, in: ICOP 2003 Permafrost, edited by: Arenson, L. U.,
Phillips, M., and Springman, S., Taylor and Francis Group, London, UK,
199–204, 2003.
Giraudi, C.: I rock glacier tardo-pleistocenici ed olocenici dell'Appennino
– Età, distribuzione, significato paleoclimatico, It. J. Quatern. Sci., 15, 45–52, 2002.
Goudie, A. S.: The Schmidt Hammer in geomorphological research, Prog. Phys.
Geogr., 30, 703–718, https://doi.org/10.1177/0309133306071954, 2006.
Holzhauser, H., Magny, M., and Zumbühl, H. J.: Glacier and lake-level
variations in west-central Europe over the last 3500 years, Holocene, 16,
789–801, https://doi.org/10.1191/0959683605hl853ra, 2005.
Hormes, A., Beer, J., and Schlüchter, C.: A geochronological approach to
understanding the role of solar activity on Holocene glacier length
variability in the Swiss Alps, Geogr. Ann. A, 88, 282–294,
https://doi.org/10.1111/j.0435-3676.2006.00301.x, 2006.
Huss, M, and Förster, S.: L'avancée et le recul des glaciers pendant
le Petit Age glaciaire, Ann. Valais., 2019, 225–232, 2019.
IVS Dokumentation Kanton Graubünden: Strecke GR 17, Splügen –
Splügenberg (– Chiavenna); Splügenpass, Inventar Historischer Verkehrswege der Schweiz, Bern, Schweiz, 3 pp., 1992a.
IVS Dokumentation Kanton Graubünden: Strecke GR 17.1, Splügen –
Splügenberg (– Chiavenna); Splügenpass, Linienführung 1,
Saumweg, Inventar Historischer Verkehrswege der Schweiz, Bern, Schweiz, 7 pp., 1992b.
Joerin, U. E., Stocker, T. F., and Schlüchter, C.: Multicentury glacier
fluctuations in the Swiss Alps during the Holocene, Holocene, 16, 697–704,
https://doi.org/10.1191/0959683606hl964rp, 2006.
Kamleitner, S., Ivy-Ochs, S., Scapozza C., and Christl, M.: Early Lateglacial ice decay in Swiss main Valleys. Glacier retreat into Rhine & Ticino Valley at the end of the last glaciation, Annual Report 2020, Ion Beam Physics, ETH Zurich, Zurich, Switzerland, p. 48, available at: https://ams.ethz.ch/publications/annual-reports/2017-to-2020.html (last access: 12 November 2021), 2020.
Kellerer-Pirklbauer, A.: The Schmidt-hammer as a relative age dating tool for rock glacier surfaces: examples from Northern and Central Europe, in: Ninth International Conference on Permafrost. 2. Frozen ground – Congresses, edited by: Kane, D. L., and Hinkel, K. M., Institute of Northern Engineering, University of Alaska, Fairbanks, 913–918, 2008.
Kerschner, H., Hertl, A., Gross, G., Ivy-Ochs, S., and Kubik, P. W.: Surface
exposure dating of moraines in the Kromer valley (Silvretta Mountains, Austria) – evidence for glacial response to the 8.2 ka event in the Eastern
Alps?, Holocene, 16, 7–15, https://doi.org/10.1196/0959683606hl902rp, 2006.
Lambiel, C.: Glacial and periglacial landscapes in the Hérens Valley, in: Landscapes and Landforms of Switzerland, edited by: Reynard, E., Springer Nature, Cham, Switzerland, 263–275, https://doi.org/10.1007/978-3-030-43203-4_18, 2021.
Maisch M.,: Die Gletschers Graubündens, Geographisches Institut der Universität Zürich, Physische Geographie, 33, 2, 1992.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Fenbiao, N.: Global signatures
and dynamical origins of the Little Ice Age and Medieval Climate Anomaly,
Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303, 2009.
Matthews, J. A. and Owen, H.: Schmidt hammer exposure-age dating: developing linear age-calibration curves using Holocene bedrock surfaces from the Jotunheimen-Jostedalsbreen regions of southern Norway, Boreas, 39, 105–115, https://doi.org/10.1111/j.1502-3885.2009.00107.x, 2010.
Matthews, J. A. and Winkler, S.: Schmidt-hammer exposure-age dating (SHD):
application to early Holocene moraines and a reappraisal of the reliability
of terrestrial cosmogenic-nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway, Boreas, 40, 256–270, https://doi.org/10.1111/j.1502-3885.2010.00178.x, 2011.
McCarroll, D.: Potential and limitations of the Schmidt Hammer for relative-age dating: field tests on Neoglacial moraines, Jotunheimen, Southern Norway, Arct. Alp. Res., 21, 268–275, https://doi.org/10.2307/1551565, 1989.
Merisio, L.: Via Sett. Via Spluga, Lyasis Edizioni, Sondrio, Italia, 152 pp., 2014.
Mortara, G., Orombelli, G., Pelfini, M., and Tellini, C.: Suoli e suoli sepolti olocenici per la datazione di eventi geomorfologici in ambiente alpino: alcuni esempi tratti da indagini preliminari in Val d'Aosta, It. J.
Quatern. Sci., 5, 135–146, 1992.
NGRIP-Members: High resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004a.
NGRIP-Members: North Greenland Ice Core Project Oxygen Isotope Data, IGBP
PAGES/World Data Center for Paleoclimatology Data Contribution Series n. 2004-059, NOAA/NGDC Paleoclimatology Program, Boulder, Colorado, 2004b.
Oeschger, H., Riesen, T., and Lerman, J. C.: Bern radiocarbon dates VII,
Radiocarbon, 12, 358–384, https://doi.org/10.1017/S0033822200008146, 1970.
Patterson, W. P., Dietrich, K. A., Holmden, C., and Andrews, J. T.: Two
Millennia of North Atlantic seasonality and implications for Norse colonies,
P. Natl. Acad. Sci. USA, 107, 5306–5310, https://doi.org/10.1073/pnas.0902522107, 2010.
Pellegrini, M.: Materiali per una storia del clima nelle Alpi Lombarde durante gli ultimi cinque secoli, Arch. Stor. Ticin., 55–56, 133–278, 1973.
Scapozza, C.: Stratigraphie, morphodynamique, paléoenvironnements des
terrains sédimentaires meubles à forte déclivité du domaine
périglaciaire alpin, Géovisions, 40, Université de Lausanne, Lausanne, Suisse, 551 pp., 2013.
Scapozza, C.: Appunti climatici e glaciologici sulle descrizioni della Valle
di Blenio tra Settecento e Ottocento, Arch. Stor. Ticin., 155, 38–63, 2014.
Scapozza, C.: Evolution des glaciers et du pergélisol depuis le dernier
maximum glaciaire dans la région du mont Gelé-Mont Fort (Alpes
Valaisannes, Suisse) : chronologie, modalités de la dernière déglaciation et datations des âges d'exposition à l'aide du
marteau de Schmidt, Quaternaire, 26, 141–173, https://doi.org/10.4000/quaternaire.7250, 2015.
Scapozza, C.: Evidence of paraglacial and paraperiglacial crisis in Alpine
sediment transfer since the Last Glaciation (Ticino, Switzerland), Quaternaire, 27, 139–154, https://doi.org/10.4000/quaternaire.7805, 2016.
Scapozza, C.: Pater Placidus a Spescha (1752–1833), Précurseur de la
glaciologie au début du XIXe siècle dans les Alpes de l'Adula, Ann.
Valais., 2019, 249–259, 2019a.
Scapozza, C.: Esempi di corrispondenze della suddivisione formale della
Serie/Epoca dell'Olocene nella Svizzera italiana, Boll. Soc. Ticin. Sci. Nat., 107, 83–88, 2019b.
Scapozza, C. and Ambrosi, C.: Between glaciers, rivers and lakes: the
geomorphological landscapes of Ticino, in: Landscapes and Landforms of Switzerland, edited by: Reynard, E., Springer Nature, Cham, Switzerland,
325–336, https://doi.org/10.1007/978-3-030-43203-4_22, 2021.
Scapozza, C. and Scapozza, G.: Il modello regionale della linea di equilibrio dei ghiacciai per lo stadio di riferimento 1850 nelle Alpi Ticinesi Orientali (Svizzera), Geol. Insubr., 11, 35–44, 2015.
Scapozza, C., Lambiel, C., Reynard, E., Fallot, J.-M., Antognini, M., and Schoeneich, P.: Radiocarbon dating of fossil wood remains buried by the Piancabella rock glacier, Blenio Valley (Ticino, southern Swiss Alps):
Implications for rock glacier, treeline and climate history, Permafrost
Periglac., 21, 90–96, https://doi.org/10.1002/ppp.673, 2010.
Scapozza, C., Castelletti, C., Soma, L., Dall'Agnolo, S., and Ambrosi, C.:
Timing of LGM and deglaciation in the Southern Swiss Alps, Géomorphologie, 20, 307–322, https://doi.org/10.4000/geomorphologie.10753, 2014a.
Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., and Conedera, M.: Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps, Earth Surf. Proc. Land., 39, 2056–2069,
https://doi.org/10.1002/esp.3599, 2014b.
Schmidt, E.: Der Beton-Prüfhammer – Ein Gerät zur Bestimmung der
Qualität des Betons im Bauwerk, Schweiz. Bauzeit., 68, 378–379, 1950.
Scotti, R., Brardinoni, F., Crosta, G. B., Cola, G., and Mair, V.: Time
constraints for post-LGM landscape response to deglaciation in Val Viola,
Central Italian Alps, Quaternary Sci. Rev., 177, 10–33,
https://doi.org/10.1016/j.quascirev.2017.10.011, 2017.
Shakesby, R. A., Matthews, J. A., and Owen, G.: The Schmidt hammer as a
relative-age dating tool and its potential for calibrated-age dating in
Holocene glaciated environments, Quaternary Sci. Rev., 25, 2846–2867, https://doi.org/10.1016/j.quascirev.2006.07.011, 2006.
Shakesby, R. A., Matthews, J. A., Karlén, W., and Los, S. O.: The Schmidt hammer as a Holocene calibrated-age dating technique: Testing the form of the R-value-age relationship and defining the predicted-age error, Holocene, 21, 615–628, https://doi.org/10.1177/0959683610391322, 2011.
Simonett, J.: Splügenpass, Historisches Lexikon der Schweiz (HLS), available at: https://hls-dhs-dss.ch/de/articles/008823/2013-01-10/ (last access: 9 November 2021), 2013.
Steinemann, O., Reitner, J. M., Ivy-Ochs, S., and Christl, M.: Tracking rockglacier evolution in the Eastern Alps from the Lateglacial to the early
Holocene, Quaternary Sci. Rev., 214, 106424, https://doi.org/10.1016/j.quascirev.2020.106424, 2020.
swisstopo: 1255 Splügenpass, Geological Vector Datasets GeoCover,
1:25 000, Federal Office of Topography swisstopo, Bern, Switzerland, 2020.
Tinner, W., Lotter, A. F., Ammann, B., Conedera, M., Hubschmid, P., van Leeuwen, J. F., and Wehrli, M.: Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BCE to 800 CE, Quaternary Sci. Rev., 22, 1447–1460, https://doi.org/10.1016/S0277-3791(03)00083-0, 2003.
Walker, M., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher, D. A.,
Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., and Weiss, H.:
Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by
a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial
records) and the Subcommission on Quaternary Stratigraphy (International
Commission on Stratigraphy), J. Quaternary Sci., 27, 549–659, https://doi.org/10.1002/jqs.2565, 2012.
Winkler, S.: The Little Ice Age maximum in the Southern Alps, New Zealand:
preliminary results at Mueller Glacier, Holocene, 10, 643–647,
https://doi.org/10.1191/095968300666087656, 2000.
Winkler, S. and Lambiel, C.: Age constraints of rock glaciers in the Southern Alps/New Zealand – Exploring their palaeoclimatic potential, Holocene, 28, 778–790, https://doi.org/10.1177/0959683618756802, 2018.
Zoller, H. and Kleiber, H.: Vegetationsgeschichtliche Untersuchungen in der
montanen und subalpinen Stufe der Tessinertäler, Ver. Natur. Gesell. Basel, 81, 91–153, 1971.
Zumbühl, H. J. and Holzhauser, H.: Glaciers des Alpes du Petit âge
glaciaire, Les Alpes, 3, 1–322, 1988.
Short summary
Exposure ages make it possible to determine the time of weathering of a rock surface. They can be determined from rebound values measured with the Schmidt hammer and calibrated on surfaces of known age, defined in this study thanks to historical cartography and two mule tracks built in 300 and 1250 CE, which allowed us to reconstruct glacier fluctuations over the last 3 centuries in Val Scaradra and to define the time of deglaciation and rock glacier development in the Splügenpass region.
Exposure ages make it possible to determine the time of weathering of a rock surface. They can...
Theme issue