Articles | Volume 80, issue 4
https://doi.org/10.5194/gh-80-455-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gh-80-455-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recovering environmental information from steep Alpine ice – development of a lightweight decametric ice corer and first use at Grandes Jorasses (4208 m a.s.l., Mont-Blanc massif)
Ludovic Ravanel
CORRESPONDING AUTHOR
EDYTEM, Université Savoie Mont-Blanc, CNRS (UMR 5204), 73370 Le Bourget du Lac, France
Department of Geosciences, University of Oslo, 0371 Oslo, Norway
Romain Duphil
IGE, Université Grenoble Alpes, CNRS (UMR 5001), 38000 Grenoble, France
Emmanuel Malet
EDYTEM, Université Savoie Mont-Blanc, CNRS (UMR 5204), 73370 Le Bourget du Lac, France
Christine Piot
EDYTEM, Université Savoie Mont-Blanc, CNRS (UMR 5204), 73370 Le Bourget du Lac, France
Olivier Alemany
IGE, Université Grenoble Alpes, CNRS (UMR 5001), 38000 Grenoble, France
Xavier Cailhol
EDYTEM, Université Savoie Mont-Blanc, CNRS (UMR 5204), 73370 Le Bourget du Lac, France
Michel Fauquet
ENSA, ENSM, 74400 Chamonix, France
Related authors
Léa Courtial-Manent, Jean-Louis Mugnier, Anta-Clarisse Sarr, Ludovic Ravanel, Julien Carcaillet, Riccardo Vassallo, and Arthur Schwing
Geogr. Helv., 80, 339–362, https://doi.org/10.5194/gh-80-339-2025, https://doi.org/10.5194/gh-80-339-2025, 2025
Short summary
Short summary
This study explores how rocks on glacier surfaces originating from rockfalls help measure erosion rates using a chemical marker called 10Be. By analyzing data from 31 glaciers we found that erosion rates vary widely but can be accurately estimated and reveal links to rock exposure, glacier movement, and climate effects. Comparing 10Be erosion rates to other exhumation rates shows cases of balance, slower erosion, or faster erosion, offering insights into the complex drivers of rockwall erosion.
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637, https://doi.org/10.5194/egusphere-2025-637, 2025
Short summary
Short summary
Permafrost dynamics at Aiguille du Midi in the French Alps was investigated using Automated Electrical Resistivity Tomography (A-ERT) during four years. A-ERT reveals seasonal and multi-year permafrost changes. Temperatures estimated using resistivity measurements provide a good agreement with measured temperature in borehole in frozen zone. Variations in active layer thickness across different faces were observed, along with a slight decrease in permafrost resistivity suggesting warming.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Jacques Mourey, Pascal Lacroix, Pierre-Allain Duvillard, Guilhem Marsy, Marco Marcer, Emmanuel Malet, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 22, 445–460, https://doi.org/10.5194/nhess-22-445-2022, https://doi.org/10.5194/nhess-22-445-2022, 2022
Short summary
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
Léa Courtial-Manent, Jean-Louis Mugnier, Anta-Clarisse Sarr, Ludovic Ravanel, Julien Carcaillet, Riccardo Vassallo, and Arthur Schwing
Geogr. Helv., 80, 339–362, https://doi.org/10.5194/gh-80-339-2025, https://doi.org/10.5194/gh-80-339-2025, 2025
Short summary
Short summary
This study explores how rocks on glacier surfaces originating from rockfalls help measure erosion rates using a chemical marker called 10Be. By analyzing data from 31 glaciers we found that erosion rates vary widely but can be accurately estimated and reveal links to rock exposure, glacier movement, and climate effects. Comparing 10Be erosion rates to other exhumation rates shows cases of balance, slower erosion, or faster erosion, offering insights into the complex drivers of rockwall erosion.
Matan Ben-Asher, Antoine Chabas, Jean-Yves Josnin, Josué Bock, Emmanuel Malet, Amaël Poulain, Yves Perrette, and Florence Magnin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2450, https://doi.org/10.5194/egusphere-2025-2450, 2025
Short summary
Short summary
We studied how water moves through fractured rock walls in a high mountain area in the Alps. Using sensors and tracers over two years, in a high-altitude site, we tracked where the water came from and when it flowed. Most of it came from melting snow, but some came from rain and older ice. The results show that heat and water flow can speed up the melting of frozen ground, which may affect mountain stability. This helps us understand how climate change influences these fragile environments.
Feras Abdulsamad, Josué Bock, Florence Magnin, Emmanuel Malet, André Revil, Matan Ben-Asher, Jessy Richard, Pierre-Allain Duvillard, Marios Karaoulis, Thomas Condom, Ludovic Ravanel, and Philip Deline
EGUsphere, https://doi.org/10.5194/egusphere-2025-637, https://doi.org/10.5194/egusphere-2025-637, 2025
Short summary
Short summary
Permafrost dynamics at Aiguille du Midi in the French Alps was investigated using Automated Electrical Resistivity Tomography (A-ERT) during four years. A-ERT reveals seasonal and multi-year permafrost changes. Temperatures estimated using resistivity measurements provide a good agreement with measured temperature in borehole in frozen zone. Variations in active layer thickness across different faces were observed, along with a slight decrease in permafrost resistivity suggesting warming.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Short summary
Climate change impacts all parts of the cryosphere but most importantly the smaller ice bodies like ice aprons (IAs). This study is the first attempt on a regional scale to assess the impacts of the changing climate on these small but very important ice bodies. Our study shows that IAs have consistently lost mass over the past decades. The effects of climate variables, particularly temperature and precipitation and topographic factors, were analysed on the loss of IA area.
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Jacques Mourey, Pascal Lacroix, Pierre-Allain Duvillard, Guilhem Marsy, Marco Marcer, Emmanuel Malet, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 22, 445–460, https://doi.org/10.5194/nhess-22-445-2022, https://doi.org/10.5194/nhess-22-445-2022, 2022
Short summary
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Cited articles
Ambrosini, R., Azzoni, S. R., Pittino, F., Diolaiuti, G., Franzetti, A., and Parolini, M.: First evidence of microplastic contamination in the supraglacial debris of an alpine glacier, Environnemental Pollution, 253, 297–301, https://doi.org/10.1016/j.envpol.2019.07.005, 2019.
Arienzo, M. M., Legrand, M., Preunkert, S., Stohl, A., Chellman, N., Eckhardt, S., Gleason, K. E., and McConnell, J. R.: Alpine ice-core evidence of a large increase in vanadium and molybdenum pollution in Western Europe during the 20th century, Journal of Geophysical Research: Atmospheres, 126, e2020JD033211, https://doi.org/10.1029/2020JD033211, 2021.
Bentley, C. R., Koci, B. R., Augustin, L. J.-M., Bolsey, R. J., Green, J. A., Kyne, J. D., Lebar, D. A., Mason, W. P., Shturmakov, A. J., Engelhardt, H. F., Harrison, W. D., Hecht, M. H., and Zagorodnov, V.: Ice drilling and coring, in: Drilling in extreme environments, edited by: Bar-Cohen, Y. and Zacny, K., Wiley, 221–308, https://doi.org/10.1002/9783527626625.ch4, 2009.
Bohleber, P.: Alpine ice cores as climate and environmental archives, Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.743, 2019.
Bohleber, P., Hoffmann, H., Kerch, J., Sold, L., and Fischer, A.: Investigating cold based summit glaciers through direct access to the glacier base: a case study constraining the maximum age of Chli Titlis glacier, Switzerland, The Cryosphere, 12, 401–412, https://doi.org/10.5194/tc-12-401-2018, 2018.
Brad, T., Itcus, C., Pascu, M. D., Per?oiu, A., Hillebrand-Voiculescu, A., Iancu, L., and Purcarea, C.: Fungi in perennial ice from Scărișoara Ice Cave (Romania), Scientific Reports, 8, 10096, https://doi.org/10.1038/s41598-018-28401-1, 2018.
Brook, E. J. and Buizert, C.: Antarctic and global climate history viewed from ice cores, Nature, 558, 200–208, https://doi.org/10.1038/s41586-018-0172-5, 2018.
Brugger, S. O., Schwikowski, M., Gobet, E., Schwörer, C., Rohr, C., Sigl, M., Henne, S., Pfister, C., Jenk, T. M., Henne, P. D., and Tinner, W.: Alpine glacier reveals ecosystem impacts of Europe's prosperity and peril over the last millennium, Geophysical Research Letters, 48, e2021GL095039, https://doi.org/10.1029/2021GL095039, 2021.
Chung, A., Parrenin, F., Mulvaney, R., Vittuari, L., Frezzotti, M., Zanutta, A., Lilien, D. A., Cavitte, M. G. P., and Eisen, O.: Age, thinning and spatial origin of the Beyond EPICA ice from a 2.5D ice flow model, The Cryosphere, 19, 4125–4140, https://doi.org/10.5194/tc-19-4125-2025, 2025.
Cremona, A., Huss, M., Landmann, J. M., Borner, J., and Farinotti, D.: European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings, The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, 2023.
Delmas, R. J.: Environmental information from ice cores, Reviews of Geophysics, 30, 1–21, https://doi.org/10.1029/91RG02725, 1992.
Eichler, A., Legrand, M., Jenk, T. M., Preunkert, S., Andersson, C., Eckhardt, S., Engardt, M., Plach, A., and Schwikowski, M.: Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores, The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, 2023.
EPICA community members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Feurdean, A., Perşoiu, A., Pazdur, A., and Onac, B. P.: Evaluating the palaeoecological potential of pollen recovered from ice in caves: a case study from Scărişoara Ice Cave, Romania, Review of Palaeobotany and Palynology, 165, 1–10, https://doi.org/10.1016/j.revpalbo.2011.01.007, 2011.
Gabrieli, J. and Barbante, C.: The Alps in the age of the Anthropocene: the impact of human activities on the cryosphere recorded in the Colle Gnifetti glacier, Rendiconti Lincei, Scienze Fisiche e Naturali, 25, 71–83, https://doi.org/10.1007/s12210-014-0292-2, 2014.
Gabrielli, P., Barbante, C., Bertagna, G., Bertó, M., Binder, D., Carton, A., Carturan, L., Cazorzi, F., Cozzi, G., Dalla Fontana, G., Davis, M., De Blasi, F., Dinale, R., Dragà, G., Dreossi, G., Festi, D., Frezzotti, M., Gabrieli, J., Galos, S. P., Ginot, P., Heidenwolf, P., Jenk, T. M., Kehrwald, N., Kenny, D., Magand, O., Mair, V., Mikhalenko, V., Lin, P. N., Oeggl, K., Piffer, G., Rinaldi, M., Schotterer, U., Schwikowski, M., Seppi, R., Spolaor, A., Stenni, B., Tonidandel, D., Uglietti, C., Zagorodnov, V., Zanoner, T., and Zennaro, P.: Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum, The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, 2016.
Gibson, C. J., Johnson, J. A., Shturmakov, A. J., Mortensen, N. B., and Goetz, J. J.: Replicate ice-coring system architecture: mechanical design, Annals of Glaciology, 55, 165–172, https://doi.org/10.3189/2014AoG68A019, 2014.
Guillet, G. and Ravanel, L.: Variations in surface area of six ice aprons in the Mont-Blanc massif since the Little Ice Age, Journal of Glaciology, 66, 777–789, https://doi.org/10.1017/jog.2020.46, 2020.
Guillet, G., Preunkert, S., Ravanel, L., Montagnat, M., and Friedrich, R.: Investigation of a cold-based ice apron on a high-mountain permafrost rock wall using ice texture analysis and micro-14C dating: a case study of the Triangle du Tacul ice apron (Mont Blanc massif, France), Journal of Glaciology, 67, 1205–1212, https://doi.org/10.1017/jog.2021.65, 2021.
Haeberli, W., Frauenfelder, R., Kääb, A., and Wagner, S.: Characteristics and potential climatic significance of “miniature ice caps” (crest- and cornice-type low-altitude ice archives), Journal of Glaciology, 50, 129–136, https://doi.org/10.3189/172756504781830330, 2004.
Heucke, E.: A light portable steam-driven ice drill suitable for drilling holes in ice and firn, Geografiska Annaler A, 81, 603–609, https://doi.org/10.1111/1468-0459.00088, 1999.
Hoffmann, H., Friedrich, R., Kromer, B., and Fahrni, S.: Status report: implementation of gas measurements at the MAMS 14C AMS facility in Mannheim, Germany, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 410, 184–187, https://doi.org/10.1016/j.nimb.2017.08.018, 2017.
Hoffmann, H., Preunkert, S., Legrand, M., Leinfelder, D., Bohleber, P., Friedrich, R., and Wagenbach, D.: A new sample preparation system for micro-14C dating of glacier ice with a first application to a high alpine ice core from Colle Gnifetti (Switzerland), Radiocarbon, 60, 517–533, https://doi.org/10.1017/RDC.2017.99, 2018.
Holmlund, P., Onac, B. P., Hansson, M., Holmgren, K., Mörth, M., Nyman, M., and Perşoiu, A.: Assessing the palaeoclimate potential of cave glaciers: the example of the scarişoara ice cave (romania), Geografiska Annaler: Series A, Physical Geography, 87, 193–201, https://doi.org/10.1111/j.0435-3676.2005.00252.x, 2005.
Huber, C. J., Eichler, A., Mattea, E., Brütsch S., Jenk T. M., Gabrieli J., Barbante C., and Schwikowski M.: High-altitude glacier archives lost due to climate change-related melting, Nature Geoscience, 17, 110–113, https://doi.org/10.1038/s41561-023-01366-1, 2024.
Jenk, T. M., Szidat, S., Schwikowski, M., Gäggeler, H. W., Brütsch, S., Wacker, L., Synal, H.-A., and Saurer, M.: Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940), Atmos. Chem. Phys., 6, 5381–5390, https://doi.org/10.5194/acp-6-5381-2006, 2006.
Jenk, T. M., Szidat, S., Bolius, D., Sigl, M., Gäggeler, H. W., Wacker, L., Ruff, M., Barbante, C., Boutron, C. F., and Schwikowski, M.: A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages, Journal of Geophysical Research: Atmospheres, 114, https://doi.org/10.1029/2009JD011860, 2009.
Jouzel, J. and Masson-Delmotte, V.: Deep ice cores: the need for going back in time, Quaternary Science Reviews, 29, 3683–3689, https://doi.org/10.1016/j.quascirev.2010.10.002, 2010a.
Jouzel, J. and Masson-Delmotte, V.: Paleoclimates: what do we learn from deep ice cores?, WIREs Climate Change, 1, 654–669, https://doi.org/10.1002/wcc.72, 2010b.
Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., Stuiver, M., and White, J.: Validity of the temperature reconstruction from water isotopes in ice cores, Journal of Geophysical Research, 102, 26471–26487, https://doi.org/10.1029/97JC01283, 1997.
Kaufman, D. S. and Broadman, E.: Revisiting the Holocene global temperature conundrum, Nature, 614, 425–435, https://doi.org/10.1038/s41586-022-05536-w, 2023.
Kaushik, S., Ravanel, L., Magnin, F., Yan, Y., Trouve, E., and Cusicanqui, D.: Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps), The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022, 2022.
Lamothe, A., Akers, P. D., Albertin S., Caillon, N., Darfeuil, S., Gautier, E., Ginot, P., Hattori, S., and Savarino, J.: 1000 years of nitrogen oxide sources in Western Europe: evidence from nitrogen stable isotopes (δ15N) of nitrate in a Mont Blanc ice core, ESS Open Archive, 8 June, https://doi.org/10.22541/essoar.171781204.49551149/v1, 2024.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: a review, Reviews of Geophysics, 35, 219–243, https://doi.org/10.1029/96RG03527, 2017.
Legrand, M., McConnell, J. R., Preunkert, S., Bergametti, G., Chellman, N. J., Desboeufs, K., Plach, A., Stohl, A., and Eckhardt, S.: Thallium pollution in Europe over the twentieth century recorded in Alpine ice: contributions from coal burning and cement production, Geophysical Research Letters, 49, e2022GL098688, https://doi.org/10.1029/2022GL098688, 2022.
Luongo, M. T., Kurbatov, A. V., Erhardt, T., Mayewski, P. A., McCormick, M., More, A. F., Spaulding, N. E., Wheatley, S. D., Yates, M. G., and Bohleber, P. D.: Possible Icelandic tephra found in European Colle Gnifetti glacier, Geochemistry, Geophysics, Geosystems, 18, 3904–3909, https://doi.org/10.1002/2017GC007022, 2017.
Maggi, V., Villa, S., Finizio, A., Delmonte, B., Casati, P., and Marino, F.: Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers, Hydrobiologia, 562, 43–56, https://doi.org/10.1007/s10750-005-1804-y, 2006.
Magnin, F., Brenning, A., Bodin, X., Deline, P., and Ravanel, L.: Statistical modelling of rock wall permafrost distribution: application to the Mont Blanc massif, Géomorphologie, 21, 145–162, https://doi.org/10.4000/geomorphologie.10965, 2015.
Mariani, I., Eichler, A., Jenk, T. M., Brönnimann, S., Auchmann, R., Leuenberger, M. C., and Schwikowski, M.: Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001, Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, 2014.
Montagnat, M., Weiss, J., Cinquin-Lapierre, B., Labory, P. A., Moreau, L., Damilano, F., and Lavigne, D.: Waterfall ice: formation, structure and evolution, Journal of Glaciology, 56, 225–234, https://doi.org/10.3189/002214310791968412, 2010.
Motoyama, H.: The Second Deep Ice Coring Project at Dome Fuji, Antarctica, Scientific Drilling, 5, 41–43, https://doi.org/10.2204/iodp.sd.5.05.2007, 2007.
Mourey, J., Marcuzzi, M., Ravanel, L., and Pallandre, F.: Effects of climate change on high Alpine mountain environments: Evolution of mountaineering routes in the Mont Blanc massif (Western Alps) over half a century, Arctic, Antarctic, and Alpine Research, 51, 176–189, https://doi.org/10.1080/15230430.2019.1612216, 2019.
Müller-Tautges, C., Eichler, A., Schwikowski, M., Pezzatti, G. B., Conedera, M., and Hoffmann, T.: Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport, Atmos. Chem. Phys., 16, 1029–1043, https://doi.org/10.5194/acp-16-1029-2016, 2016.
Perşoiu, A., Onac, B. P., Wynn, J. G., Bojar, A.-V., and Holmgren, K.: Stable isotope behavior during cave ice formation by water freezing in Scărişoara Ice Cave, Romania, Journal of Geophysical Research – Atmospheres, 116, https://doi.org/10.1029/2010JD014477, 2011.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Preunkert, S. and Legrand, M.: Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores, Clim. Past, 9, 1403–1416, https://doi.org/10.5194/cp-9-1403-2013, 2013.
Preunkert, S., Wagenbach, D., Legrand, M., and Vincent, C.: Col du Dome (Mt. Blanc Massif, French Alps) suitability for ice core studies in relation with past atmospheric chemistry over Europe, Tellus B: Chemical and Physical Meteorology, 52, 993–1012, https://doi.org/10.3402/tellusb.v52i3.17081, 2000.
Preunkert, S., Legrand, M., Kutuzov, S., Ginot, P., Mikhalenko, V., and Friedrich, R.: The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe, Atmos. Chem. Phys., 19, 14119–14132, https://doi.org/10.5194/acp-19-14119-2019, 2019a.
Preunkert, S., McConnell, J. R., Hoffmann, H., Legrand, M., Wilson, A. I., Eckhardt, S., Stohl, A., Chellman, N. J., Arienzo, M. M., and Friedrich, R.: Lead and antimony in basal ice from Col du Dome (French Alps) dated with radiocarbon: a record of pollution during antiquity, Geophysical Research Letters, 46, 4953–4961, https://doi.org/10.1029/2019GL082641, 2019b.
Rabatel, A., Letréguilly, A., Dedieu, J.-P., and Eckert, N.: Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls, The Cryosphere, 7, 1455–1471, https://doi.org/10.5194/tc-7-1455-2013, 2013.
Ravanel, L., Guillet, G, Kaushik, S, Preunkert, S., Malet, E., Magnin, F., Trouvé, E., Montagnat, M., Yan, Y., and Deline, P.: Ice aprons on steep high-alpine slopes: insights from the Mont-Blanc massif, Western Alps, Journal of Glaciology, 69, 1275–1291, https://doi.org/10.1017/jog.2023.15, 2023.
Ravanel, L., Flinois, G., Jaillet, S., Malet, E., Magnin, F., Rigal, D., Burnet, H., and Hobléa, F.: Underground ice beyond the limits of the cryosphere. Glaciological functioning and uses of the Grande Glacière du Parmelan (Bornes massif, France), Géomorphologie, 30, https://doi.org/10.4000/13569, 2024.
Robin, G. D. Q.: Ice cores and climatic change, Philosophical Transactions of the Royal Society B, 280, 143–168, https://doi.org/10.1098/rstb.1977.0103, 1977.
Schöner, W., Auer, I., Böhm, R., Keck, L., and Wagenbach, D.: Spatial representativity of air-temperature information from instrumental and ice-core-based isotope records in the European Alps, Annals of Glaciology, 35, 157–161, https://doi.org/10.3189/172756402781816717, 2002.
Stoffel, M., Luetscher, M., Bollschweiler, M., and Schlatter, F.: Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St. Livres ice cave, Switzerland, Quaternary Research, 72, 16–26, https://doi.org/10.1016/j.yqres.2009.03.002, 2009.
Tison, J.-L., Souchez, R., Wolff, E. W., Moore, J. C., Legrand, M. R., and de Angelis, M.: Is a periglacial biota responsible for enhanced dielectric response in basal ice from the Greenland Ice Core project ice core?, Journal of Geophysical Research: Atmospheres, 103, 18885–18894, https://doi.org/10.1029/98JD01107, 1998.
Uglietti, C., Zapf, A., Jenk, T. M., Sigl, M., Szidat, S., Salazar, G., and Schwikowski, M.: Radiocarbon dating of glacier ice: overview, optimisation, validation and potential, The Cryosphere, 10, 3091–3105, https://doi.org/10.5194/tc-10-3091-2016, 2016.
Vimeux, F., Ginot, P., Schwikowski, M., Vuille, M., Hoffmann, G., Thompson, L. G., and Schotterer, U.: Climate variability during the last 1000 years inferred from Andean ice cores: A review of methodology and recent results, Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 229–241, https://doi.org/10.1016/j.palaeo.2008.03.054, 2009.
Xu, J., Hou, S., Qin, D., Kaspari, S., Mayewski, P. A., Petit, J. R., Delmonte, B., Kang, S., Ren, J., Chappellaz, J., and Hong, S.: A 108.83-m ice-core record of atmospheric dust deposition at Mt. Qomolangma (Everest), Central Himalaya, Quaternary Research, 73, 33–38, https://doi.org/10.1016/j.yqres.2009.09.005, 2010.
Xu, C. H., LI, Z. Q., Wang, F. T., Wang, P. Y., and Mu, J. X.: Rapid mass loss and disappearance of summer-accumulation type hanging glacier, Advances in Climate Change Research, 13, 73–81, https://doi.org/10.1016/j.accre.2021.11.001, 2021.
Zhang, N., An, C., Fan, X., Shi, G., Li, C., Liu, J., Hu, Z., Talalay, P., Sun, Y., and Li, Y.: Chinese first deep ice-core drilling project DK-1 at Dome A, Antarctica (2011–2013): progress and performance, Annals of Glaciology, 55, 88–98, https://doi.org/10.3189/2014AoG68A006, 2014.
Zagorodnov, V., Thompson, L. G., Ginot, P., and Mikhalenko, V.: Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system, Journal of Glaciology, 51, 491–501, https://doi.org/10.3189/172756505781829269, 2005.
Short summary
Ice aprons are little-known ice masses on steep Alpine rock faces. They are also paleo-environmental archives as their ice is several thousand years old. A special corer has been developed to sample the ice before analysing it.
Ice aprons are little-known ice masses on steep Alpine rock faces. They are also...