Articles | Volume 76, issue 4
https://doi.org/10.5194/gh-76-385-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gh-76-385-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the ecological value of dynamic mountain geomorphosites
Jonathan Bussard
CORRESPONDING AUTHOR
Institute of Geography and Sustainability and Interdisciplinary
Centre for Mountain Research, University of Lausanne, Sion, Switzerland
Elisa Giaccone
Institute of Earth Surface Dynamics, University of Lausanne,
Lausanne, Switzerland
Related authors
Alexis Metzger and Jonathan Bussard
Geogr. Helv., 75, 393–401, https://doi.org/10.5194/gh-75-393-2020, https://doi.org/10.5194/gh-75-393-2020, 2020
Short summary
Short summary
Cet article s'intéresse à la représentation de la Suisse à travers deux affiches. La première vise à attirer une clientèle touristique en 1942, la seconde à faire voter les électeurs pour le parti Vert'libéral en 2019. Nous décryptons les images représentées et montrons en quoi elles vont de pair avec certains messages. La Suisse est ici celle des familles urbaines et celle de la verdure. Ces deux thèmes sont clés dans la mobilisation d'un public touristique et d'un électorat.
Alexis Metzger and Jonathan Bussard
Geogr. Helv., 75, 393–401, https://doi.org/10.5194/gh-75-393-2020, https://doi.org/10.5194/gh-75-393-2020, 2020
Short summary
Short summary
Cet article s'intéresse à la représentation de la Suisse à travers deux affiches. La première vise à attirer une clientèle touristique en 1942, la seconde à faire voter les électeurs pour le parti Vert'libéral en 2019. Nous décryptons les images représentées et montrons en quoi elles vont de pair avec certains messages. La Suisse est ici celle des familles urbaines et celle de la verdure. Ces deux thèmes sont clés dans la mobilisation d'un public touristique et d'un électorat.
Related subject area
Physical Geography
Patrimoine géologique et géomorphologique : base pour le géotourisme et la création d'un géoparc UNESCO dans le Dahar (Sud-est tunisien)
Chancen, Herausforderungen und Risiken der Inwertsetzung des regionalen Geo-Erbes: Geotopschutz und Geotourismus im Spannungsfeld unterschiedlichster Interessen
The potential of fragipans in sustaining pearl millet during drought periods in north-central Namibia
The 1513 Monte Crenone rock avalanche: numerical model and geomorphological analysis
Evolution of fluvial environments and history of human settlements on the Ticino river alluvial plain
Schmidt hammer exposure-age dating of periglacial and glacial landforms in the Southern Swiss Alps based on R-value calibration using historical data
Assessing hillslope sediment generation potential by tree throw: a preliminary field study along a small river valley in the Jura Mountains, northwest Switzerland
Glacial lake outburst flood hazard assessment by satellite Earth observation in the Himalayas (Chomolhari area, Bhutan)
Reconstruction and actual trends of landslide activities in Bruust–Haltiwald, Horw, canton of Lucerne, Switzerland
Monitoring the crisis of a rock glacier with repeated UAV surveys
Regional-scale inventory of periglacial moving landforms connected to the torrential network system
Piecing together the Lateglacial advance phases of the Reussgletscher (central Swiss Alps)
A study of the Würm glaciation focused on the Valais region (Alps)
Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling
Avalanche fatalities in the European Alps: long-term trends and statistics
Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation
Introduction to the special issue of Geographica Helvetica: "Mapping, measuring and modeling in geomorphology"
Methods for detecting channel bed surface changes in a mountain torrent – experiences from the Dorfbach torrent
Risiko des Eintrags von Phosphor in den Hallwilersee durch Bodenerosion
The use of a raindrop aggregate destruction device to evaluate sediment and soil organic carbon transport
Investigation on protalus ramparts in the Swiss Alps
Improvements in 3-D digital mapping for geomorphological and Quaternary geological cartography
Ground temperature variations in a talus slope influenced by permafrost: a comparison of field observations and model simulations
The influence of terracettes on the surface hydrology of steep-sloping and subalpine environments: some preliminary findings
Experimentelle Erkundung von Wildbächen, Murgängen, Hangrutschungen und Steinschlag: Aktuelle Beispiele der WSL
Editorial Publishing physical geography papers in Geographica Helvetica
Implications of climate change on Glacier de la Plaine Morte, Switzerland
Auswirkungen der Klimaänderung auf die schweizerische Wasserkraftnutzung
Topoclimatological case-study of Alpine pastures near the Albula Pass in the eastern Swiss Alps
A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps
Emmanuel Reynard, Tarek Ben Fraj, Aziza Ghram Messedi, Hédi Ben Ouezdou, Mohamed Ouaja, and Yves Matthijs
Geogr. Helv., 77, 97–119, https://doi.org/10.5194/gh-77-97-2022, https://doi.org/10.5194/gh-77-97-2022, 2022
Short summary
Short summary
The study is a geomorphological analysis of Djebel Dahar, in south-eastern Tunisia, carried out as the basis for a UNESCO Global Geopark. We made a synthesis of the geographical, geological and geomorphological context of the area, proposed a delimitation for the future geopark, based on geological and geomorphological characteristics, and established a preliminary list of geosites, indicating their scientific value and their potential for geotourism.
Heidi Megerle, Simon Martin, and Géraldine Regolini
Geogr. Helv., 77, 53–66, https://doi.org/10.5194/gh-77-53-2022, https://doi.org/10.5194/gh-77-53-2022, 2022
Short summary
Short summary
In the field of regional geo-heritage promotion, this paper presents some opportunities, challenges and risks for geotope protection and geotourism.
Brice Prudat, Wolfgang Fister, Lena Bloemertz, Juliane Krenz, and Nikolaus J. Kuhn
Geogr. Helv., 77, 39–51, https://doi.org/10.5194/gh-77-39-2022, https://doi.org/10.5194/gh-77-39-2022, 2022
Short summary
Short summary
Soil quality depends on water availability for plants. Sandy soils with a poorly permeable layer (fragipan) are considered inept for agriculture. However they are cultivated in Namibia as they secure a minimum harvest during droughts. In order to understand the hydrological influence of fragipans in these soils, soil moisture content was measured. The results illustrate that the combination of sandy topsoil and shallow fragipan has beneficial effects on plant-available water during dry periods.
Alessandro De Pedrini, Christian Ambrosi, and Cristian Scapozza
Geogr. Helv., 77, 21–37, https://doi.org/10.5194/gh-77-21-2022, https://doi.org/10.5194/gh-77-21-2022, 2022
Short summary
Short summary
The Monte Crenone rock avalanche of 1513 is well known on the southern side of the Alps because in 1515 it generated the largest inundation that has occurred in Switzerland in the Common Era, the Buzza di Biasca. New geological and historical observations allowed the setup of a numerical model of this major event, permitting a better definition of the chain of consequences that affected the alluvial plain of the river Ticino from Biasca to Lake Maggiore between the 16th and the 19th century.
Dorota Czerski, Daphné Giacomazzi, and Cristian Scapozza
Geogr. Helv., 77, 1–20, https://doi.org/10.5194/gh-77-1-2022, https://doi.org/10.5194/gh-77-1-2022, 2022
Short summary
Short summary
The paper presents the results of recent geoarchaeological studies on the Ticino river alluvial plain. The sedimentological descriptions are combined with archaeological observations and constrained with radiocarbon dating. This approach, together with data from previous research and historical sources, provides an interesting overview of the eveolution of Ticino river morphosedimentary dynamics in relation to human settlements since the Neolithic.
Cristian Scapozza, Chantal Del Siro, Christophe Lambiel, and Christian Ambrosi
Geogr. Helv., 76, 401–423, https://doi.org/10.5194/gh-76-401-2021, https://doi.org/10.5194/gh-76-401-2021, 2021
Short summary
Short summary
Exposure ages make it possible to determine the time of weathering of a rock surface. They can be determined from rebound values measured with the Schmidt hammer and calibrated on surfaces of known age, defined in this study thanks to historical cartography and two mule tracks built in 300 and 1250 CE, which allowed us to reconstruct glacier fluctuations over the last 3 centuries in Val Scaradra and to define the time of deglaciation and rock glacier development in the Splügenpass region.
Philip Greenwood, Jan Bauer, and Nikolaus J. Kuhn
Geogr. Helv., 76, 319–333, https://doi.org/10.5194/gh-76-319-2021, https://doi.org/10.5194/gh-76-319-2021, 2021
Short summary
Short summary
Soil erosion by wind and water is a commonly recognized phenomenon on agricultural land. Erosion in forests is studied less and generally considered to be limited because of the soil protection by vegetation. However, trees, when toppled because of old age or wind, loosen a considerable amount of soil when their roots are pulled from the ground. In addition, the holes left in the ground act as collectors for water and concentrated runoff, causing significant soil loss on forested slopes.
Cristian Scapozza, Christian Ambrosi, Massimiliano Cannata, and Tazio Strozzi
Geogr. Helv., 74, 125–139, https://doi.org/10.5194/gh-74-125-2019, https://doi.org/10.5194/gh-74-125-2019, 2019
Short summary
Short summary
A glacial lake outburst flood hazard assessment by satellite Earth observation and numerical modelling was done for the lakes linked to the Thangothang Chhu glacier, Chomolhari area (Bhutan), combining detailed geomorphological mapping, landslide and rock glacier inventories, as well as surface displacements quantified by satellite InSAR. Outburst scenario modelling revealed that only a flood wave can have an impact on the two human settlements located downslope of the glacier.
Philippe Burkhalter, Markus Egli, and Holger Gärtner
Geogr. Helv., 74, 93–103, https://doi.org/10.5194/gh-74-93-2019, https://doi.org/10.5194/gh-74-93-2019, 2019
Short summary
Short summary
A spatiotemporal reconstruction of slope movements on the edge of Lake Lucerne near the municipality of Horw, canton of Lucerne is presented. The reconstruction was realized by analyzing growth reactions of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) trees growing on this slope. Results show that the area has been moving at least since 1948. A significant concentration of events was observed between 1990 and 2000 as well as after 2006.
Sebastián Vivero and Christophe Lambiel
Geogr. Helv., 74, 59–69, https://doi.org/10.5194/gh-74-59-2019, https://doi.org/10.5194/gh-74-59-2019, 2019
Mario Kummert and Reynald Delaloye
Geogr. Helv., 73, 357–371, https://doi.org/10.5194/gh-73-357-2018, https://doi.org/10.5194/gh-73-357-2018, 2018
Max Boxleitner, Susan Ivy-Ochs, Dagmar Brandova, Marcus Christl, Markus Egli, and Max Maisch
Geogr. Helv., 73, 241–252, https://doi.org/10.5194/gh-73-241-2018, https://doi.org/10.5194/gh-73-241-2018, 2018
Patrick Becker, Martin Funk, Christian Schlüchter, and Kolumban Hutter
Geogr. Helv., 72, 421–442, https://doi.org/10.5194/gh-72-421-2017, https://doi.org/10.5194/gh-72-421-2017, 2017
Short summary
Short summary
This article studies the ice flow in the Valais region during the last glaciation (Würm) in detail. The numerical modelling shows a discrepancy of the height of the ice cap compared to the geomorphological evidence based on trimlines. However, geomorphological evidence at the Simplon Pass indicating an ice flow from the Rhone valley into the valley of Toce was confirmed. Furthermore it is shown that for this confirmation a sufficient ice thickness is obligatory.
Patrick Becker, Julien Seguinot, Guillaume Jouvet, and Martin Funk
Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, https://doi.org/10.5194/gh-71-173-2016, 2016
Frank Techel, Frédéric Jarry, Georg Kronthaler, Susanna Mitterer, Patrick Nairz, Miha Pavšek, Mauro Valt, and Gian Darms
Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, https://doi.org/10.5194/gh-71-147-2016, 2016
Short summary
Short summary
During the last 45 years, about 100 people lost their lives in avalanches in the European Alps each year. Avalanche fatalities in settlements and on transportation corridors have considerably decreased since the 1970s. In contrast, the number of avalanche fatalities during recreational activities away from avalanche-secured terrain doubled between the 1960s and 1980s and has remained relatively stable since, despite a continuing strong increase in winter backcountry recreational activities.
Rachel Luethi and Marcia Phillips
Geogr. Helv., 71, 121–131, https://doi.org/10.5194/gh-71-121-2016, https://doi.org/10.5194/gh-71-121-2016, 2016
Short summary
Short summary
Long-term borehole temperature monitoring in mountain permafrost environments is challenging under the hostile conditions reigning there. On the basis of data measured in the SLF borehole network we show situations where ground temperature data should be interpreted with caution. A selection of recently observed problems are discussed, and advantages and possible drawbacks of various solutions including data correction, measurement redundancy or alternate instrumentation are presented.
P. Greenwood, M. Hoelzle, and N. J. Kuhn
Geogr. Helv., 70, 311–313, https://doi.org/10.5194/gh-70-311-2015, https://doi.org/10.5194/gh-70-311-2015, 2015
Short summary
Short summary
Editorial introducing the special issue of Geographica Helvetica: Mapping, Measuring and Modeling in Geomorphology.
C. Willi, C. Graf, Y. Deubelbeiss, and M. Keiler
Geogr. Helv., 70, 265–279, https://doi.org/10.5194/gh-70-265-2015, https://doi.org/10.5194/gh-70-265-2015, 2015
Short summary
Short summary
The erosion of and depositions on channel bed surfaces are instrumental to understanding debris flow processes. We present different methods and highlight their pro and cons. Terrestrial and airborne laser scanning, erosion sensors, cross sections and geomorphological mapping are compared. Two of these approaches are tested and applied in a torrent. The results indicate that the methods are associated with variable temporal and spatial resolution as well as data quality and invested effort.
S. Müller and D. Schaub
Geogr. Helv., 70, 193–198, https://doi.org/10.5194/gh-70-193-2015, https://doi.org/10.5194/gh-70-193-2015, 2015
L. Xiao, Y. Hu, P. Greenwood, and N. J. Kuhn
Geogr. Helv., 70, 167–174, https://doi.org/10.5194/gh-70-167-2015, https://doi.org/10.5194/gh-70-167-2015, 2015
C. Scapozza
Geogr. Helv., 70, 135–139, https://doi.org/10.5194/gh-70-135-2015, https://doi.org/10.5194/gh-70-135-2015, 2015
Short summary
Short summary
In the scientific literature, “protalus ramparts” can designate both a nivo-gravitational landform (also called “pronival ramparts”) and a permafrost-related landform. Thanks to a selection of eight major diagnostic criteria defined from observations carried out in the Swiss Alps, it was highlighted that the structure, ice content and creep dynamics of protalus ramparts are the same as many rock glaciers. Protalus rampart were therefore defined simply as a (small) active talus rock glacier.
C. Ambrosi and C. Scapozza
Geogr. Helv., 70, 121–133, https://doi.org/10.5194/gh-70-121-2015, https://doi.org/10.5194/gh-70-121-2015, 2015
Short summary
Short summary
Some examples of 3-D digital mapping for Quaternary geological and geomorphological cartography are presented in this paper. Examples concern in particular the Quaternary geological cartography around the well-know Flims rockslide area (Graubünden), performed in the framework of the GeoCover project launched by the Swiss Geological Survey, and the landslide and glacial/periglacial landform mapping and inventorying in the southern Swiss Alps (Ticino) for assessing the slope tectonic activity.
B. Staub, A. Marmy, C. Hauck, C. Hilbich, and R. Delaloye
Geogr. Helv., 70, 45–62, https://doi.org/10.5194/gh-70-45-2015, https://doi.org/10.5194/gh-70-45-2015, 2015
P. Greenwood, S. Kuonen, W. Fister, and N. J. Kuhn
Geogr. Helv., 70, 63–73, https://doi.org/10.5194/gh-70-63-2015, https://doi.org/10.5194/gh-70-63-2015, 2015
Short summary
Short summary
Alpine and mountain slopes represent important pathways that link high-altitude grazing areas to meadows and rangelands at lower elevations. Given the acute gradients associated with such environments, we hypothesize that terracettes act as efficient runoff conveyance routes that facilitate the movement of runoff and associated material during erosion events. This hypothesis was partially disproved during a series of rainfall/runoff simulations on a well-developed terracette system, however.
M. Stähli, C. Graf, C. Scheidl, C. R. Wyss, and A. Volkwein
Geogr. Helv., 70, 1–9, https://doi.org/10.5194/gh-70-1-2015, https://doi.org/10.5194/gh-70-1-2015, 2015
M. Hoelzle and E. Reynard
Geogr. Helv., 68, 225–226, https://doi.org/10.5194/gh-68-225-2013, https://doi.org/10.5194/gh-68-225-2013, 2013
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
R. Weingartner, B. Schädler, and P. Hänggi
Geogr. Helv., 68, 239–248, https://doi.org/10.5194/gh-68-239-2013, https://doi.org/10.5194/gh-68-239-2013, 2013
P. Michna, W. Eugster, R. V. Hiller, M. J. Zeeman, and H. Wanner
Geogr. Helv., 68, 249–263, https://doi.org/10.5194/gh-68-249-2013, https://doi.org/10.5194/gh-68-249-2013, 2013
S. Schneider, S. Daengeli, C. Hauck, and M. Hoelzle
Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, https://doi.org/10.5194/gh-68-265-2013, 2013
Cited articles
Anderson, M. G. and Ferree, C. E.: Conserving the Stage: Climate Change and
the Geophysical Underpinnings of Species Diversity, PLOS One, 5, e11554,
https://doi.org/10.1371/journal.pone.0011554, 2010.
Atkinson, C. L., Allen, D. C., Davis, L., and Nickerson, Z. L.: Incorporating
ecogeomorphic feedbacks to better understand resiliency in streams: A review
and directions forward, Geomorphology, 305, 123–140,
https://doi.org/10.1016/j.geomorph.2017.07.016, 2018.
Beier, P. and Brost, B.: Use of Land Facets to Plan for Climate Change:
Conserving the Arenas, Not the Actors, Conserv. Biol., 24, 701–710,
https://doi.org/10.1111/j.1523-1739.2009.01422.x, 2010.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E.,
Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H.,
Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C.,
Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A.,
Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The
European mountain cryosphere: a review of its current state, trends, and
future challenges, The Cryosphere, 12, 759–794,
https://doi.org/10.5194/tc-12-759-2018, 2018.
Bétard, F.: Géodiversité, biodiversité et patrimoines
environnementaux. De la connaissance à la conservation et à la
valorisation, Mémoire d'Habilitation à Diriger des Recherches,
Université Paris-Diderot, Paris, 2017.
Bollati, I., Leonelli, G., Vezzola, L., and Pelfini, M.: The role of Ecological Value in Geomorphosite assessment for the Debris-Covered Miage
Glacier (Western Italian Alps) based on a review of 2.5 centuries of
scientific study, Geoheritage, 7, 119–135, https://doi.org/10.1007/s12371-014-0111-2, 2015.
Bollati, I., Crosa Lenz, B., Golzio, A., and Masseroli, A.: Tree rings as
ecological indicator of geomorphic activity in geoheritage studies, Ecol.
Indic., 93, 899–916, https://doi.org/10.1016/j.ecolind.2018.05.053, 2018.
Bollati, I., Masseroli, A., Mortara, G., Pelfini, M., and Trombino, L.:
Alpine gullies system evolution: erosion drivers and control factors. Two
examples from the western Italian Alps, Geomorphology, 327, 248–263,
https://doi.org/10.1016/j.geomorph.2018.10.025, 2019.
Bornand, C., Gygax, A., Juillerat, P., Jutzi, M., Möhl, A., Rometsch, S.,
Sager, L., Santiago, H., and Eggenberg, S.: Liste rouge Plantes vasculaires.
Espèces menacées en Suisse, Office fédéral de l'environnement, Berne and Info Flora, Geneva, 2016.
Brilha, J.: Geoconservation and protected areas, Environ. Conserv., 29, 273–276, https://doi.org/10.1017/S0376892902000188, 2002.
Brilha, J.: Geoheritage: Inventories and Evaluation, in: Geoheritage, edited
by: Reynard, E. and Brilha, J., Elsevier, Amsterdam, 69–85,
https://doi.org/10.1016/B978-0-12-809531-7.00004-6, 2018.
Brilha, J., Gray, M., Pereira, D. I., and Pereira, P.: Geodiversity: An
integrative review as a contribution to the sustainable management of the
whole of nature, Environ. Sci. Policy, 86, 19–28,
https://doi.org/10.1016/j.envsci.2018.05.001, 2018.
Bruschi, V. M. and Cendrero, A.: Geosite evaluation; can we mesure
intangible values?, Il Quaternario, 18, 293–306, 2005.
Burga, C. A., Frauenfelder, R., Ruffet, J., Hoelzle, M., and Kääb, A.: Vegetation on Alpine rock glacier surfaces: a contribution to abundance
and dynamics on extreme plant habitats, Flora, 199, 505–515,
https://doi.org/10.1078/0367-2530-00179, 2004.
Burga, C. A., Krüsi, B., Egli, M., Wernli, M., Elsener, S., Ziefle, M.,
Fischer, T., and Mavris, C.: Plant succession and soil development on the
foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight
forward or chaotic?, Flora, 205, 561–576, https://doi.org/10.1016/j.flora.2009.10.001, 2010.
Buri, A., Cianfrani, C., Pinto-Figueroa, E., Yashiro, E., Spangenberg, J.
E., Adatte, T., Verrecchia, E., Guisan, A., and Pradervand, J.-N.: Soil
factors improve predictions of plant species distribution in a mountain
environment, Prog. Phys. Geogr., 41, 703–722, https://doi.org/10.1177/0309133317738162, 2017.
Butler, D. R.: Zoogeomorphology: animals as geomorphic agents, Cambridge
University Press, Cambridge, New York, 1995.
Cannone, N. and Gerdol, R.: Vegetation as an ecological indicator of surface
instability in rock glaciers, Arct. Antarct. Alp. Res., 35, 384–390, 2003.
Cannone, N., Sgorbati, S., and Guglielmin, M.: Unexpected impacts of climate
change on alpine vegetation, Front. Ecol. Environ., 5, 360–364, 2007.
Carcavilla, L., Durán, J. J., García-Cortés, Á., and
López-Martínez, J.: Geological Heritage and Geoconservation in
Spain: Past, Present, and Future, Geoheritage, 1, 75–91, https://doi.org/10.1007/s12371-009-0006-9, 2009.
Cocean, G. and Cocean, P.: An Assessment of Gorges for Purposes of
Identifying Geomorphosites of Geotourism Value in the Apuseni Mountains
(Romania), Geoheritage, 9, 71–81, https://doi.org/10.1007/s12371-016-0180-5, 2017.
Colombo, N., Giaccone, E., Paro, L., Buffa, G., and Fratianni, S.: The recent
transition from glacial to periglacial environment in a high altitude alpine
basin (Sabbione basin, north-western Italian Alps). Preliminary outcomes
from a multidisciplinary approach, Geogr. Fis. Din. Quat., 39, 21–36,
https://doi.org/10.4461/GFDQ.2016.39.3, 2016.
Coratza, P. and Hobléa, F.: The specificities of geomorphological
heritage, in: Geoheritage, edited by: Reynard, E. and Brilha, J., Elsevier,
Amsterdam, 87–106, https://doi.org/10.1016/B978-0-12-809531-7.00005-8, 2018.
Corenblit, D., Tabacchi, E., Steiger, J., and Gurnell, A. M.: Reciprocal
interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches, Earth-Sci. Rev., 84, 56–86, https://doi.org/10.1016/j.earscirev.2007.05.004, 2007.
Corenblit, D., Baas, A. C. W., Bornette, G., Darrozes, J., Delmotte, S.,
Francis, R. A., Gurnell, A. M., Julien, F., Naiman, R. J., and Steiger, J.:
Feedbacks between geomorphology and biota controlling Earth surface
processes and landforms: A review of foundation concepts and current understandings, Earth-Sci. Rev., 106, 307–331, https://doi.org/10.1016/j.earscirev.2011.03.002, 2011.
Crofts, R.: Promoting geodiversity: learning lessons from biodiversity, P.
Geologist. Assoc., 125, 263–266, https://doi.org/10.1016/j.pgeola.2014.03.002, 2014.
Crofts, R.: Putting Geoheritage Conservation on All Agendas, Geoheritage, 10, 231–238, https://doi.org/10.1007/s12371-017-0239-y, 2018.
Crofts, R., Gordon, J. E., Brilha, J., Gray, M., Gunn, J., Larwood, J.,
Santucci, V., Tormey, D., and Worboys, G. L.: Guidelines for geoconservation
in protected and conserved areas, edited by: Groves, C., IUCN – International Union for Conservation of Nature, Gland, Switzerland,
https://doi.org/10.2305/IUCN.CH.2020.PAG.31.en, 2020.
Crofts, R., Tormey, D., and Gordon, J. E.: Introducing New Guidelines on
Geoheritage Conservation in Protected and Conserved Areas, Geoheritage, 13,
33, https://doi.org/10.1007/s12371-021-00552-0, 2021.
Eichel, J., Corenblit, D., and Dikau, R.: Conditions for feedbacks between
geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window, Earth Surf. Proc. Land., 41, 406–419, https://doi.org/10.1002/esp.3859, 2016.
Eichel, J., Draebing, D., Klingbeil, L., Wieland, M., Eling, C., Schmidtlein, S., Kuhlmann, H., and Dikau, R.: Solifluction meets vegetation: the role of biogeomorphic feedbacks for turf-banked solifluction lobe development, Earth Surf. Proc. Land., 42, 1623–1635, https://doi.org/10.1002/esp.4102, 2017.
Erikstad, L.: Geoheritage and geodiversity management – the questions for
tomorrow, P. Geologist. Assoc., 124, 713–719, https://doi.org/10.1016/j.pgeola.2012.07.003, 2013.
Erschbamer, B., Niederfriniger Schlag, R., and Winkler, E.: Colonization
processes on a central Alpine glacier foreland, J. Veg. Sci., 19, 855–862, https://doi.org/10.3170/2008-8-18464, 2008.
Eveillard-Buchoux, M., Beninger, P. G., Chadenas, C., and Sellier, D.:
Small-scale natural landscape features and seabird nesting sites: the
importance of geodiversity for conservation, Landscape Ecol., 34, 2295–2306, https://doi.org/10.1007/s10980-019-00879-8, 2019.
Garamvoelgyi, A. and Hufnagel, L.: Impacts of climate change on vegetation
distribution no. 1 climate change induced vegetation shifts in the palearctic region, Appl. Ecol. Environ. Res., 11, 79–122, https://doi.org/10.15666/aeer/1101_079122, 2013.
Garavaglia, V., Pelfini, M., and Bollati, I.: The influence of climate change on glacier geomorphosites: the case of two Italian glaciers (Miage Glacier, Forni Glacier) investigated through dendrochronology, Géomorphologie, 16, 153–164, https://doi.org/10.4000/geomorphologie.7895, 2010.
Gentili, R., Armiraglio, S., Rossi, G., Sgorbati, S., and Baroni, C.: Floristic patterns, ecological gradients and biodiversity in the composite
channels (Central Alps, Italy), Flora, 205, 388–398,
https://doi.org/10.1016/j.flora.2009.12.013, 2010.
Gentili, R., Armiraglio, S., Sgorbati, S., and Baroni, C.: Geomorphological
disturbance affects ecological driving forces and plant turnover along an
altitudinal stress gradient on alpine slopes, Plant Ecol., 214, 571–586,
https://doi.org/10.1007/s11258-013-0190-1, 2013.
Gentizon, C.: La géomorphologie et les paysages dans les réserves
naturelles: études de cas, in: Paysages géomorphologiques, Actes du
séminaire de troisième cycle de géographie Paysages
géomorphologiques, organisé par les Instituts de Géographie des
Universités de Lausanne et Fribourg du 10 au 14 février et du 25 au
29 août 2003, Lausanne, 111–121, 2004.
Giaccone, E.: Geomorphological characteristics as preditors for vegetation models in Alpine environment, PhD thesis, Institute of Earth Surface Dynamics, University of Lausanne, https://serval.unil.ch/resource/serval:BIB_EF887773E615.P005/REF (last access: 4 October 2021), 2020.
Giaccone, E., Luoto, M., Vittoz, P., Guisan, A., Mariéthoz, G., and Lambiel, C.: Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps, Earth Surf. Proc. Land., 44, 3093–3107, https://doi.org/10.1002/esp.4715, 2019.
Giovagnoli, M. C.: Geoheritage in Italy, in Landscapes and Landforms of Italy, edited by: Soldati, M., and Marchetti, M., Springer International
Publishing, Cham, 491–500, https://doi.org/10.1007/978-3-319-26194-2_42, 2017.
Gorbushina, A. A.: Life on the rocks, Environ. Microbiol., 9, 1613–1631,
https://doi.org/10.1111/j.1462-2920.2007.01301.x, 2007.
Gordon, J. E. and Barron, H. F.: Scotland's Geodiversity: Development of the
Basis for a National Framework, Scottish Natural Heritage Commissioned
Report No. 417, available at: http://nora.nerc.ac.uk/id/eprint/19222/1/National_Geodiversity_Framewrok_417.pdf (last access: 30 September 2021), 2011.
Gordon, J. E., Crofts, R., and Díaz-Martínez, E.: Geoheritage Conservation and Environmental Policies: Retrospect and Prospect, in:
Geoheritage, edited by: Reynard, E. and Brilha, J., Elsevier, Amsterdam,
213–235, https://doi.org/10.1016/B978-0-12-809531-7.00012-5, 2018a.
Gordon, J. E., Crofts, R., Díaz-Martínez, E., and Woo, K. S.: Enhancing the Role of Geoconservation in Protected Area Management and Nature Conservation, Geoheritage, 10, 191–203, https://doi.org/10.1007/s12371-017-0240-5, 2018b.
Grandgirard, V.: Géomorphologie et gestion du patrimoine naturel: la
mémoire de la Terre est notre mémoire, Geogr. Helv., 52, 47–56,
https://doi.org/10.5194/gh-52-47-1997, 1997a.
Grandgirard, V.: Géomorphologie, protection de la nature et gestion du
paysage, PhD Thesis in Geography, University of Fribourg, Fribourg, Switzerland, 1997b.
Gray, M.: Geodiversity: valuing and conserving abiotic nature, John Wiley & Sons, Chichester, UK, 2004.
Gray, M.: Geodiversity and geoconservation: what, why, and how?, The George Wright Forum, 22, 4–12, 2005.
Gray, M.: Other nature: geodiversity and geosystem services, Environ. Conserv., 38, 271–274, https://doi.org/10.1017/S0376892911000117, 2011.
Gray, M.: Geodiversity: valuing and conserving abiotic nature, 2nd Edc., John
Wiley & Sons, Chichester, UK, 2013.
Gray, M.: Geodiversity: The Backbone of Geoheritage and Geoconservation, in:
Geoheritage, edited by: Reynard, E. and Brilha, J., Elsevier, Amsterdam,
13–25, https://doi.org/10.1016/B978-0-12-809531-7.00001-0, 2018.
Gray, M., Gordon, J. E., and Brown, E. J.: Geodiversity and the ecosystem
approach: the contribution of geoscience in delivering integrated environmental management, P. Geologist. Assoc., 124, 659–673,
https://doi.org/10.1016/j.pgeola.2013.01.003, 2013.
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R.,
Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A.,
Broennimann, O., Austin, M., Ferrier, S., Kearney, M. R., Possingham, H. P.,
and Buckley, Y. M.: Predicting species distributions for conservation
decisions, Ecol. Lett., 16, 1424–1435, https://doi.org/10.1111/ele.12189, 2013.
Hjort, J. and Luoto, M.: Interaction of geomorphic and ecologic features
across altitudinal zones in a subarctic landscape, Geomorphology, 112, 324–333, https://doi.org/10.1016/j.geomorph.2009.06.019, 2009.
Hjort, J., Gordon, J. E., Gray, M., and Hunter, M. L.: Why geodiversity
matters in valuing nature's stage, Conserv. Biol., 29, 630–639,
https://doi.org/10.1111/cobi.12510, 2015.
Howard, J. A. and Mitchell, C. W.: Phytogeomorphology, Wiley, New York, 1985.
IPCC: Global warming of 1.5 ∘C, in: An IPCC Special Report on the
impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Geneva, Switzerland, 2018.
Klanderud, K. and Totland, Ø.: Habitat dependent nurse effects of the
dwarf-shrub Dryas octopetala on alpine and arctic plant community structure,
Écoscience, 11, 410–420, https://doi.org/10.1080/11956860.2004.11682850, 2004.
Knox, J. C.: Valley Alluviation in Southwestern Wisconsin, Ann. Assoc. Am.
Geogr., 62, 401–410, https://doi.org/10.1111/j.1467-8306.1972.tb00872.x, 1972.
Körner, C.: Alpine plant life: functional plant ecology of high mountain
ecosystems, 2nd Edn., Springer-Verlag, Berlin, Heidelberg, 2003.
Kubalíková, L.: Geomorphosite assessment for geotourism purposes,
Czech J. Tourism, 2, 80–104, https://doi.org/10.2478/cjot-2013-0005, 2013.
Lambiel, C., Bardou, E., Delaloye, R., Schoeneich, P., and Schütz, P.:
Permafrost-Vaud. Etat des lieux de la distribution du pergélisol et du
risque périglaciaire dans le canton de Vaud, Rapport d'étude,
Université de Lausanne, Lausanne, Université de Fribourg, Fribourg, 2008.
Lane, S. N., Borgeaud, L., and Vittoz, P.: Emergent geomorphic–vegetation
interactions on a subalpine alluvial fan, Earth Surf. Proc. Land., 41,
72–86, https://doi.org/10.1002/esp.3833, 2016.
Larwood, J. G., Badman, T., and McKeever, P. J.: The progress and future of
geoconservation at a global level, P. Geologist. Assoc., 124, 720–730,
https://doi.org/10.1016/j.pgeola.2013.04.001, 2013.
Lawler, J. J., Ackerly, D. D., Albano, C. M., Anderson, M. G., Dobrowski, S.
Z., Gill, J. L., Heller, N. E., Pressey, R. L., Sanderson, E. W., and Weiss,
S. B.: The theory behind, and the challenges of, conserving nature's stage
in a time of rapid change, Conserv. Biol., 29, 618–629, https://doi.org/10.1111/cobi.12505, 2015.
le Roux, P. C. and Luoto, M.: Earth surface processes drive the richness,
composition and occurrence of plant species in an arctic–alpine environment, J. Veg. Sci., 25, 45–54, https://doi.org/10.1111/jvs.12059, 2014.
Martin, S.: Valoriser le géopatrimoine par la méditation indirecte
et la visualisation des objets géomorphologiques (Géovisions no. 41), PhD thesis, Institut de géographie et durabilité, Université de Lausanne, Lausanne, 2013.
Masseroli, A., Leonelli, G., Bollati, I., Trombino, L., and Pelfini, M.: The
influence of geomorphological processes on the treeline position in Upper
Valtellina (Central Italian Alps), Geogr. Fis. Din, Quat., 39, 171–182,
https://doi.org/10.4461/GFDQ.2016.39.16, 2016.
Masseroli, A., Bollati, I., Proverbio, S., Pelfini, M., and Trombino, L.: Soils as a useful tool for reconstructing geomorphic dynamics in high mountain environments: The case of the Buscagna stream hydrographic basin (Lepontine Alps), Geomorphology, 371, 107442, https://doi.org/10.1016/j.geomorph.2020.107442, 2020.
Matthews, J. A.: The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands, Cambridge University Press, Cambridge, 1992.
Mod, H. K., Scherrer, D., Luoto, M., and Guisan, A.: What we use is not what
we know: environmental predictors in plant distribution models, J. Veg. Sci., 27, 1308–1322, https://doi.org/10.1111/jvs.12444, 2016.
Moreau, M., Mercier, D., Laffly, D., and Roussel, E.: Impacts of recent
paraglacial dynamics on plant colonization: A case study on Midtre Lovénbreen foreland, Spitsbergen (79∘ N), Geomorphology, 95, 48–60, https://doi.org/10.1016/j.geomorph.2006.07.031, 2008.
Mucivuna, V. C., Reynard, E., and da Garcia, M. G. M.: Geomorphosites Assessment Methods: Comparative Analysis and Typology, Geoheritage, 11,
1799–1815, https://doi.org/10.1007/s12371-019-00394-x, 2019.
Osterkamp, W. R., Hupp, C. R., and Stoffel, M.: The interactions between
vegetation and erosion: new directions for research at the interface of ecology and geomorphology, Earth Surf. Proc. Land., 37, 23–36,
https://doi.org/10.1002/esp.2173, 2012.
Panizza, M.: Geomorphosites: Concepts, methods and examples of geomorphological survey, Chinese Sci. Bull., 46, 4–5, https://doi.org/10.1007/BF03187227, 2001.
Panizza, M. and Piacente, S.: Pour une géomorphologie culturelle, in:
Paysages géomorphologiques, Actes du séminaire de troisième
cycle de géographie Paysages géomorphologiques, organisé par les
Instituts de Géographie des Universités de Lausanne et Fribourg du
10 au 14 février et du 25 au 29 août 2003, Lausanne, 194–210, 2004.
Pelfini, M. and Bollati, I.: Landforms and geomorphosites ongoing changes:
concepts and implications for geoheritage promotion, Quaestiones Geographicae, 33, 131–143, https://doi.org/10.2478/quageo-2014-0009, 2014.
Pelfini, M. and Gobbi, M.: Enhancement of the ecological value of Forni Glacier (Central Alps) as a possible geomorphosite: New data from arthropod
communities, Geogr. Fis. Din. Quat., 28, 211–217, 2005.
Pelfini, M., Garavaglia, V., and Bollati, I.: Dendrogeomorphological
investigations for assessing ecological and educational value of glacial
geomorphosites. Two examples from the Italian Alps, in: Mapping Geoheritage,
edited by: Regolini-Bissig, G. and Reynard, E., Institut de géographie,
Université de Lausanne, Lausanne, 81–95, 2010.
Pereira, P., Pereira, D., and Caetano Alves, M. I.: Geomorphosite assessment
in Montesinho Natural Park (Portugal), Geogr. Helv., 62, 159–168,
https://doi.org/10.5194/gh-62-159-2007, 2007.
Perret, A. and Martin, S.: Carte géomorphologique du vallon de Nant et
étude de la marge proglaciaire du glacier des Martinets, Bulletin de la
Murithienne, 132, 69–82, 2015.
Phillips, J. D. and Lorz, C.: Origins and implications of soil layering,
Earth-Sci. Rev., 89, 144–155, https://doi.org/10.1016/j.earscirev.2008.04.003, 2008.
Picket, S. T. A. and White, P. S.: The ecology of natural disturbance and
path dynamics, Academic Press, Orlando, Florida, 1985.
Portal, C.: Reliefs et patrimoine géomorphologique. Applications aux parcs naturels de la façade atlantique européenne, PhD Thesis, Université de Nantes, Nantes, 2010.
Pralong, J.-P.: A method for assessing tourist potential and use of
geomorphological sites, Géomorphologie, 11, 189–196,
https://doi.org/10.4000/geomorphologie.350, 2005.
Pralong, J.-P.: Géotourisme et utilisation de sites naturels
d'intérêt pour les sciences de la Terre: les régions de
Crans-Montana-Sierre (Valais, Alpes suisses) et Chamonix-Mont-Blanc
(Haute-Savoie, Alpes françaises), PhD Thesis, Faculté des
géosciences et de l'environnement, Université de Lausanne, Lausanne, 2006.
Prosser, C. D.: The history of geoconservation in England: legislative and
policy milestones, Geol. Soc. Lond. Spec. Publ., 300, 113–122, https://doi.org/10.1144/SP300.9, 2008.
Reynard, E.: Géotopes, géo (morpho) sites et paysages
géomorphologiques, in: Paysages géomorphologiques, Actes du
séminaire de troisième cycle de géographie Paysages
géomorphologiques, organisé par les Instituts de Géographie des
Universités de Lausanne et Fribourg du 10 au 14 février et du 25 au
29 août 2003, Lausanne, 123–136, 2004a.
Reynard, E.: La géomorphologie et la création des paysages, in:
Paysages géomorphologiques, Actes du séminaire de troisième
cycle de géographie Paysages géomorphologiques, organisé par les
Instituts de Géographie des Universités de Lausanne et Fribourg du
10 au 14 février et du 25 au 29 août 2003, Lausanne, 9–20, 2004b.
Reynard, E.: Protecting Stones: Conservation of Erratic Blocks in Switzerland, in: Dimension Stone 2004. New perspectives for a traditional
building material, edited by: Přikryl, R., Balkema, Leiden, 3–7, 2004c.
Reynard, E.: Géomorphosites et paysages, Géomorphologie, 11, 181–188, https://doi.org/10.4000/geomorphologie.338, 2005.
Reynard, E.: Geomorphosites: definitions and characteristics, in:
Geomorphosites, edited by: Reynard E., Coratza, P., and Regolini-Bissig, G.,
Pfeil, München, 9–20, 2009.
Reynard, E. and Coratza, P.: Scientific research on geomorphosites. A review
of the activities of the IAG working group on geomorphosites over the last
twelve years, Geogr. Fis. Din. Quat., 36, 159–168, https://doi.org/10.4461/GFDQ.2013.36.13, 2013.
Reynard, E. and Panizza, M.: Géomorphosites: définition,
évaluation et cartographie. Une introduction, Géomorphologie, 11,
177–180, 2005.
Reynard, E., Pralong, J.-P., and Gentizon, C.: La géoconservation: pour
un renouvellement de la protection de la nature en Suisse, in: Vivre dans les milieux fragiles: Alpes et Sahel, edited by: Dambo, L. and Reynard, E., Institut de Géographie, Lausanne, 57–70, 2005.
Reynard, E., Fontana, G., Kozlik, L., and Scapozza, C.: A method for assessing “scientific” and “additional values” of geomorphosites, Geogr.
Helv., 62, 148–158, https://doi.org/10.5194/gh-62-148-2007, 2007.
Reynard, E., Hobléa, F., Cayla, N., and Gauchon, C.: Les hauts lieux
géologiques et géomorphologiques alpins. Vers une redécouverte
patrimoniale?, Rev. Géogr. Alp., 99, 2, https://doi.org/10.4000/rga.1412, 2011.
Reynard, E., Perret, A., Bussard, J., Grangier, L., and Martin, S.: Integrated Approach for the Inventory and Management of Geomorphological
Heritage at the Regional Scale, Geoheritage, 8, 43–60, https://doi.org/10.1007/s12371-015-0153-0, 2016.
Reynard, E., Buckingham, T., Martin, S., and Regolini, G.: Geoheritage,
Geoconservation and Geotourism in Switzerland, in Landscapes and Landforms
of Switzerland, edited by: Reynard, E., Springer International Publishing,
Cham, 411–425, https://doi.org/10.1007/978-3-030-43203-4_29, 2021.
Rice, S., Stoffel, M., Turowski, J. M., and Wolf, A.: Disturbance regimes at
the interface of geomorphology and ecology, Earth Surf. Proc. Land., 37,
1678–1682, https://doi.org/10.1002/esp.3326, 2012.
Scherrer, D. and Körner, C.: Topographically controlled thermal-habitat
differentiation buffers alpine plant diversity against climate warming, J.
Biogeogr., 38, 406–416, 2011.
Sharples, C.: Concepts and principles of geoconservation, Tasmanian Parks & Wildlife Service, Hobart, 2002.
Stallins, A. J. and Corenblit, D.: Interdependence of geomorphic and ecologic resilience properties in a geographic context, Geomorphology, 305, 76–93, https://doi.org/10.1016/j.geomorph.2017.09.012, 2018.
Stallins, J. A.: Geomorphology and ecology: Unifying themes for complex systems in biogeomorphology, Geomorphology, 77, 207–216,
https://doi.org/10.1016/j.geomorph.2006.01.005, 2006.
Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J.,
Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A. D., Breiner, F. T., Burg, S., Czortek, P., Dawes, M. A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V. A., Fernández-Arberas, O., Fossheim, K. F., Gómez-García, D., Georges, D., Grindrud, E. T., Haider, S., Haugum, S. V, Henriksen, H.,
Herreros, M. J., Jaroszewicz, B., Jaroszynska, F., Kanka, R., Kapfer, J.,
Klanderud, K., Kühn, I., Lamprecht, A., Matteodo, M., di Cella, U. M.,
Normand, S., Odland, A., Olsen, S. L., Palacio, S., Petey, M., Piscová,
V., Sedlakova, B., Steinbauer, K., Stöckli, V., Svenning, J.-C., Teppa,
G., Theurillat, J.-P., Vittoz, P., Woodin, S. J., Zimmermann, N. E., and
Wipf, S.: Accelerated increase in plant species richness on mountain summits
is linked to warming, Nature, 556, 231–234, https://doi.org/10.1038/s41586-018-0005-6, 2018.
Stöckli, V., Wipf, S., Nilsson, C., and Rixen, C.: Using historical plant
surveys to track biodiversity on mountain summits, Plant Ecol. Divers., 4, 415–425, 2011.
Strasser, A., Heitzmann, P., Jordan, P., Stapfer, A., Stürm, B., Vogel,
A., and Weidmann, M.: Géotopes et la protection des objets géologiques en Suisse: un rapport stratégique, Groupe de travail suisse pour la protection des géotopes, Fribourg, 1995.
Štrba, L., Rybár, P., Baláž, B., Molokáč, M.,
Hvizdák, L., Kršák, B., Lukáč, M., Muchová, L.,
Tometzová, D., and Ferenčíková, J.: Geosite assessments:
comparison of methods and results, Curr. Issues. Tour., 18, 496–510,
https://doi.org/10.1080/13683500.2014.882885, 2015.
Viles, H.: Biogeomorphology, in: Encyclopedia of geomorphology, edited by:
Goudie, A., Routledge, London, 83–86, 2004.
Viles, H.: Biogeomorphology: Past, present and future, Geomorphology, 366, 106809, https://doi.org/10.1016/j.geomorph.2019.06.022, 2019.
Virtanen, R., Luoto, M., Rämä, T., Mikkola, K., Hjort, J., Grytnes,
J.-A., and Birks, H. J. B.: Recent vegetation changes at the high-latitude
tree line ecotone are controlled by geomorphological disturbance, productivity and diversity, Global Ecol. Biogeogr., 19, 810–821,
https://doi.org/10.1111/j.1466-8238.2010.00570.x, 2010.
Wilkinson, M. T., Richards, P. J., and Humphreys, G. S.: Breaking ground:
Pedological, geological, and ecological implications of soil bioturbation,
Earth-Sci. Rev., 97, 257–272, https://doi.org/10.1016/j.earscirev.2009.09.005, 2009.
Wipf, S., Stöckli, V., Herz, K., and Rixen, C.: The oldest monitoring
site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835, Plant Ecol. Divers., 6, 447–455,
https://doi.org/10.1080/17550874.2013.764943, 2013.
Zheng, F.-L.: Effect of Vegetation Changes on Soil Erosion on the Loess
Plateau, Pedosphere, 16, 420–427, https://doi.org/10.1016/S1002-0160(06)60071-4, 2006.
Zouros, N. C.: Geomorphosite assessment and management in protected areas of
Greece Case study of the Lesvos island – coastal geomorphosites, Geogr. Helv., 62, 169–180, https://doi.org/10.5194/gh-62-169-2007, 2007.
Short summary
In mountain environments, active geomorphological processes have a strong influence on plant diversity because they act as renovators for habitats of pioneer species. In this paper, we propose criteria to assess the ecological value of dynamic mountain geomorphosites. We show that the interest of plant communities and the influence of geomorphological processes on plant communities are fundamental criteria for assessing ecological value in an exhaustive and objective way.
In mountain environments, active geomorphological processes have a strong influence on plant...
Theme issue